a) a_{n}= \frac{1}{2^{n-1}}\(a_{n}= \frac{1}{2^{n-1}}\)

S_{n}=1+\frac{1}{2}+\frac{1}{2^{2}}+...+\frac{1}{2^{n-1}} = \frac{1}{1-\frac{1}{2}}=2\(S_{n}=1+\frac{1}{2}+\frac{1}{2^{2}}+...+\frac{1}{2^{n-1}} = \frac{1}{1-\frac{1}{2}}=2\)

b) p_{n}=4.\frac{1}{\left (\sqrt{2}  \right )^{n-1}}\(p_{n}=4.\frac{1}{\left (\sqrt{2} \right )^{n-1}}\)