Toán 11 Bài tập cuối chương VIII Giải Toán 11 Chân trời sáng tạo trang 86, 87
Giải Toán 11 Bài tập cuối chương VIII là tài liệu vô cùng hữu ích giúp các em học sinh lớp 11 có thêm nhiều gợi ý tham khảo để giải các bài tập trong SGK Toán 11 Chân trời sáng tạo tập 2 trang 86, 87.
Toán 11 Chân trời sáng tạo tập 2 trang 86, 87 được biên soạn đầy đủ, chi tiết trả lời các câu hỏi từ bài 1 đến 13 chương 8: Quan hệ vuông góc trong không gian giúp các bạn có thêm nhiều nguồn ôn tập đối chiếu với kết quả mình đã làm. Vậy sau đây là nội dung chi tiết giải Toán 11 tập 2 Bài tập cuối chương VIII Chân trời sáng tạo, mời các bạn cùng theo dõi tại đây.
Giải Toán 11 Bài tập cuối chương VIII
Toán lớp 11 Chân trời sáng tạo tập 2 trang 86, 87
Bài 1
Cho hình chóp S.ABCD có đáy ABCD là hình vuông, SA vuông góc với mặt đáy. Đường thẳng CD vuông góc với mặt phẳng nào sau đây?
A. (SAD)
B. (SAC)
C. (SAB)
D. (SBD)
Bài làm
Vì SA ⊥ (ABCD) nên SA ⊥ CD
Mà CD ⊥ AD nên CD ⊥ (SAD)
Đáp án: A
Bài 2
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh b, SA vuông góc với mặt đáy, SC = \(2b\sqrt{2}\). Số đo góc giữa cạnh bên SC và mặt đáy là:
A. 60o
B. 30o
C. 45o
D. 50o
Bài làm
Đáp án A
Bài 3
Cho hình chóp S.ABCD có các cạnh bên và cạnh đáy đều bằng a. Gọi M là trung điểm của SA. Mặt phẳng (MBD) vuông góc với mặt phẳng nào dưới đây?
A. (SBC)
B. (SAC)
C. (SBD)
D. (ABCD)
Bài làm
Đáp án B
Bài 4
Cho hình chóp tam giác đều S.ABC có cạnh đáy bằng 2a và chiều cao bằng \(a\sqrt{2}\). Khoảng cách từ tâm O của đáy ABC đến một mặt bên là:
A.\(\frac{a\sqrt{14}}{7}\)
B. \(\frac{a\sqrt{2}}{7}\)
C. \(\frac{a\sqrt{14}}{2}\)
D. \(\frac{2a\sqrt{14}}{7}\)
Bài làm
Đáp án A
Bài 5
Thể tích của khối chóp cụt tam giác đều có cạnh đáy lớn bằng 2a, cạnh đáy nhỏ bằng a và chiều cao bằng \(\frac{a\sqrt{6}}{3}\) là:
A. \(\frac{7\sqrt{2}}{8}a^{3}\)
B. \(\frac{\sqrt{2}}{4}a^{3}\)
C. \(\frac{7\sqrt{2}}{12}a^{3}\)
D. \(\frac{7\sqrt{3}}{4}a^{3}\)
Bài làm
Đáp án C
Bài 6
Cho chóp tứ giác S.ABCD có đáy là hình chữ nhật với AB = 4a, AD = 3a. Các cạnh bên đều có độ dài 5a. Góc nhị diện [S,BC,A] có số đo là:
A. 75o46′
B. 71o21′
C. 68o31′
D. 65o12′
Bài làm
Đáp án D
Bài 7
Nếu hình hộp chữ nhật có ba kích thước là 3;4;5 thì độ dài đường chéo của nó là:
A. \(5\sqrt{2}\)
B. 50
C. \(2\sqrt{5}\)
D. 12
Bài làm
Đáp án A
Bài 8
Thể tích của khối lăng trụ tam giác đều có tất cả các cạnh đều bằng a là:
A. \(\frac{a^{3}.\sqrt{3}}{4}\)
B. \(\frac{a^{3}.\sqrt{3}}{3}\)
C. \(\frac{a^{3}.\sqrt{2}}{3}\)
D. \(\frac{a^{3}.\sqrt{2}}{2}\)
Bài làm
Đáp án A
Bài 9
Cho hình vuông ABCD và tam giác đều SAB cạnh a nằm trong hai mặt phẳng vuông góc với nhau. Gọi M, N lần lượt là trung điểm của AB và AD.
a) Chứng minh rằng (SMD) ⊥ (SNC)
b) Tính khoảng cách từ M đến mặt phẳng (SNC)
Bài làm
a) Tam giác SAB đều có M là trung điểm AB nên SM\perp AB . Mà (SAB) \(\perp\) (ABCD) nên SM \(\perp\) (ABCD)
Suy ra: SM \(\perp\) NC
Ta có tam giác AMD và tam giác DNC bằng nhau nên \(\widehat{AMD}=\widehat{CND}\)
mà \(\widehat{AMD}+\widehat{ADM} = 90^{o}\) nên \(\widehat{CND}+\widehat{ADM} = 90^{o}\)
suy ra tam giác DNE vuông tại E. Hay DM \(\perp\) NC
Mà SM \(\perp\) NC nên NC \(\perp\) (SMD)
Vậy (SNC) \(\perp\) (SMD)
b) Kẻ MK \(\perp\) (SE)
Vì NC \(\perp\) (SMD) nên NC \(\perp\) MK . Suy ra MK \(\perp\) (SNC)
Tam giác SAB đều có SM là trung tuyến nên SM = \(\frac{a\sqrt{3}}{2}\)
Tam giác CND vuông có DE là đường cao nên \(\frac{1}{DE^{2}}=\frac{1}{DN^{2}}+\frac{1}{DC^{2}}\). Suy ra DE = \(\frac{a\sqrt{5}}{5}\)
DM = \(\sqrt{AM^{2}+AD^{2}} = \frac{a\sqrt{5}}{2}\)
ME = MD - DE = \(\frac{3a\sqrt{5}}{10}\)
SM \(\perp\) (ABCD) nên SM \(\perp\) ME
Tam giác SME vuông tại M có MK là đường cao nên \(\frac{1}{MK^{2}}=\frac{1}{SM^{2}}+\frac{1}{ME^{2}}\). Suy ra MK = \(\frac{3a\sqrt{2}}{8}\)
Bài 10
Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, SA ⊥ (SABCD) và SA = a. Gọi M, N, P lần lượt là trung điểm của SB, SC và SD. Tính khoảng cách giữa AM và NP
Bài làm
SA ⊥ (SBCD) nên SA ⊥ BC
Mà BC ⊥ AB nên BC ⊥ (SAB)
Tam giác SBC có MN là đường trung bình nên MN // BC, MN = \(\frac{1}{2}\) BC = \(\frac{a}{2}\)
Suy ra: MN ⊥ (SAB) và MN ⊥ AM
Tam giác SCD có NP là đường trung bình nên NP // CD
Mà MN // BC, BC ⊥ CD
Suy ra MN ⊥ NP
Vậy d(AM,NP) = MN = \(\frac{a}{2}\)
Bài 11
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và D, AB = AD = 2a, CD = a; số đo góc nhị diện [S, BC, A] bằng 60o. Gọi I là trung điểm của cạnh AD. Biết hai mặt phẳng (SBI) và (SCI) cùng vuông góc với mặt phẳng (ABCD). Tính thể tích khối chóp S.ABCD theo a.
Bài 12
Một chân cột bằng gang có dạng hình chóp cụt tứ giác đều có cạnh dáy lớn bằng 2a, cạnh đáy nhỏ bằng a, chiều cao h = 2a và bán kính đáy phần trụ rỗng bên trong bằng \(\frac{a}{2}\)
a) Tìm góc phẳng nhị diện tạo bởi mặt bên và mặt đáy
b) Tính thể tích chân cột nói trên theo a
Bài 13
Cho hình hộp ABCD.A'B'C'D' có cạnh bên AA' = a, đáy ABCD là hình thoi có AB = BD = a. Hình chiếu vuông góc của A' lên mặt đáy trùng với điểm O là giao điểm hai đường chéo của đáy. Tính thể tích của khối chóp.