Toán 7 Bài 3: Tam giác cân Giải Toán lớp 7 trang 59 sách Chân trời sáng tạo - Tập 2

Giải bài tập Toán lớp 7 Bài 3: Tam giác cân với lời giải chi tiết, rõ ràng theo khung chương trình sách giáo khoa Toán 7 Tập 2 Chân trời sáng tạo trang 59, 60, 61, 62, 63. Qua đó, giúp các em ôn tập và củng cố các dạng bài tập, rèn luyện kỹ năng giải môn Toán.

Giải Toán 7 Bài 3 chi tiết phần câu hỏi, luyện tập, bài tập, đồng thời còn giúp các em hệ thống lại toàn bộ kiến thức trọng tâm của Bài 3 Chương8: Tam giác. Bên cạnh đó, cũng giúp thầy cô soạn giáo án cho học sinh của mình. Vậy mời thầy cô và các em cùng theo dõi bài viết dưới đây của Eballsviet.com:

Giải Toán 7 Chân trời sáng tạo tập 2 Bài 3 - Vận dụng

Vận dụng 1

Trong hình mái nhà ở Hình 8, tính góc B và góc C, biết \hat{A} = 110^{\circ}\(\hat{A} = 110^{\circ}\)

Hình 8

Lời giải:

Tam giác ABC có AB = AC nên tam giác ABC cân tại A.

Do đó \hat{B} = \hat{C}\(\hat{B} = \hat{C}\)

Trong tam giác ABC: \hat{A} + \hat{B} + \hat{C} = 180^{\circ}\(\hat{A} + \hat{B} + \hat{C} = 180^{\circ}\)

Suy ra 2\hat{B} = 180^{\circ} - \hat{A} = 180^{\circ} - 110^{\circ} = 70^{\circ}\(2\hat{B} = 180^{\circ} - \hat{A} = 180^{\circ} - 110^{\circ} = 70^{\circ}\)

Do đó \hat{B} = \hat{C} = 35^{\circ}\(\hat{B} = \hat{C} = 35^{\circ}\)

Vận dụng 2

Cho tam giác ABC cân tại A có góc B bằng 60^{\circ}\(60^{\circ}\) .

Chứng minh rằng tam giác ABC đều.

Hình 8

Lời giải:

Tam giác ABC cân tại A nên AB = AC và \hat{B} = \hat{C} = 60^{\circ}\(\hat{B} = \hat{C} = 60^{\circ}\)

Tam giác ABC có: \hat{A} = 180^{\circ} - \hat{B} - \hat{C} = 180^{\circ} - 60^{\circ} - 60^{\circ} = 60^{\circ}\(\hat{A} = 180^{\circ} - \hat{B} - \hat{C} = 180^{\circ} - 60^{\circ} - 60^{\circ} = 60^{\circ}\)

Tam giác ABC có nên tam giác ABC cân tại C.

Do đó CA = CB.

Mà AB = AC nên AB = AC = BC.

Vậy tam giác ABC là tam giác đều.

Giải Toán 7 Chân trời sáng tạo tập 2 Bài 3 - Thực hành

Thực hành 1

Tìm các tam giác cân trong Hình 4. Kể tên các cạnh bên, cạnh đáy, góc ở đỉnh, góc ở đáy của mỗi tam giác cân đó.

Hình 4

Lời giải:

Ta có MN = ME + EN = 1 + 1 = 2 cm; MP = MF + FP = 1 + 1 = 2 cm.

Tam giác MEF có ME = MF = 1 cm nên tam giác MEF cân tại M.

Tam giác MEF cân tại M nên ME và MF là cạnh bên, EF là cạnh đáy, \hat{EMF}\(\hat{EMF}\) là góc ở đỉnh, \hat{MEF}\(\hat{MEF}\)\hat{MFE}\(\hat{MFE}\) là góc ở đáy.

Tam giác MNP có MN = MP = 2 cm nên tam giác MNP cân tại M.

Tam giác MNP cân tại M nên MN và MP là cạnh bên, NP là cạnh đáy, \hat{NMP}\(\hat{NMP}\) là góc ở đỉnh, \hat{MNP}\(\hat{MNP}\)\hat{MPN}\(\hat{MPN}\) là góc ở đáy.

Tam giác MPH có MP = MH = 2 cm nên tam giác MPH cân tại M.

Tam giác MPH cân tại M nên MP và MH là cạnh bên, PH là cạnh đáy, \hat{PMH}\(\hat{PMH}\) là góc ở đỉnh, \hat{MPH}\(\hat{MPH}\)\hat{MHP}\(\hat{MHP}\) là góc ở đáy.

Thực hành 2

Tìm số đo các góc chưa biết của mỗi tam giác trong Hình 7.

Hình 7

Lời giải:

Tam giác MNP có MN = MP nên tam giác MNP cân tại M.

Do đó \hat{MNP} = \hat{MPN} = 70^{\circ}\(\hat{MNP} = \hat{MPN} = 70^{\circ}\)

Trong tam giác MNP: \hat{NMP} = 180^{\circ} - \hat{MNP} - \hat{MPN} = 180^{\circ} - 70^{\circ} -70^{\circ} = 40^{\circ}\(\hat{NMP} = 180^{\circ} - \hat{MNP} - \hat{MPN} = 180^{\circ} - 70^{\circ} -70^{\circ} = 40^{\circ}\)

Tam giác EFH có EF = EH nên tam giác EFH cân tại E.

Do đó \hat{EFH} = \hat{EHF}\(\hat{EFH} = \hat{EHF}\)

Trong tam giác EFH: \hat{FEH} + \hat{EFH} + \hat{EHF} = 180^{\circ}\(\hat{FEH} + \hat{EFH} + \hat{EHF} = 180^{\circ}\)

Suy ra 2 \hat{EFH} = 180^{\circ} - \hat{FEH} = 180^{\circ} - 70^{\circ} = 110^{\circ}\(2 \hat{EFH} = 180^{\circ} - \hat{FEH} = 180^{\circ} - 70^{\circ} = 110^{\circ}\)

Do đó \hat{EFH} = \hat{EHF} = 55^{\circ}\(\hat{EFH} = \hat{EHF} = 55^{\circ}\)

Vậy \hat{M} = 40^{\circ} , \hat{P} = 70^{\circ} , \hat{F} = \hat{H} = 55^{\circ}\(\hat{M} = 40^{\circ} , \hat{P} = 70^{\circ} , \hat{F} = \hat{H} = 55^{\circ}\)

Thực hành 3

Tìm các tam giác cân trong Hình 11 và đánh dấu các cạnh bằng nhau.

Hình 11

Lời giải:

Tam giác ABC có \hat{ABC} = \hat{ACB} = 68^{\circ}\(\hat{ABC} = \hat{ACB} = 68^{\circ}\) nên tam giác ABC cân tại A.

Do đó AB = AC.

Tam giác MNP vuông tại N nên \hat{NPM} = 90^{\circ} - \hat{NMP} = 90^{\circ} - 45^{\circ} = 45^{\circ}\(\hat{NPM} = 90^{\circ} - \hat{NMP} = 90^{\circ} - 45^{\circ} = 45^{\circ}\) (trong tam giác vuông, tổng hai góc nhọn bằng 90^{\circ}\(90^{\circ}\) )

Tam giác MNP có \hat{NMP} = \hat{NPM} = 45^{\circ}\(\hat{NMP} = \hat{NPM} = 45^{\circ}\) nên tam giác MNP cân tại N.

Do đó NM = NP.

Tam giác EFG có \hat{E} = 35^{\circ} , \hat{G} = 27^{\circ} , \hat{F}\(\hat{E} = 35^{\circ} , \hat{G} = 27^{\circ} , \hat{F}\) là góc tù nên tam giác EFG không có hai góc nào bằng nhau.

Do đó tam giác EFG không phải tam giác cân.

Ta có hình vẽ sau:

Hình 11

Giải Toán 7 Chân trời sáng tạo trang 62, 63 tập 2

Bài 1

Tìm các tam giác cân và tam giác đều trong mỗi hình sau (Hình 13). Giải thích.

Hình 13

Gợi ý đáp án:

a. \Delta ABM\(\Delta ABM\) đều vì AB = AM = BM

\Delta AMC\(\Delta AMC\) cân tại M vì AM= MC

b. \Delta EHF\(\Delta EHF\) cân tại E vì EH = EF

\Delta EDG\(\Delta EDG\) đều vì: ED = EG = DG

\Delta EDH\(\Delta EDH\) cân tại D vì DE = DH

\Delta EGF\(\Delta EGF\) cân tại G vì GE = GF

c. \Delta EGH\(\Delta EGH\) cân tại E vì EG = EH

\Delta IGH\(\Delta IGH\) đều vì \widehat{I} = 60^{0}\(\widehat{I} = 60^{0}\), IG = IH

d. \Delta MBC\(\Delta MBC\) cân tại C vì \widehat{M} = \widehat{B} = 71^{0}\(\widehat{M} = \widehat{B} = 71^{0}\).

(\widehat{B} = 180^{o} - 71^{o} - 38^{o} = 71^{o} )\((\widehat{B} = 180^{o} - 71^{o} - 38^{o} = 71^{o} )\).

Bài 2

Cho hình 14, biết ED = EF và EI là tia phân giác của\widehat{DEF}\(\widehat{DEF}\).

Chứng minh rằng:

a. \Delta EID = \Delta EIF\(\Delta EID = \Delta EIF\)

b. Tam giác DIF cân.

Hình 14

Gợi ý đáp án:

a. Xét \Delta EID\(\Delta EID\)\Delta EIF\(\Delta EIF\) có:

EI chung

\widehat{DEI} = \widehat{IEF}\(\widehat{DEI} = \widehat{IEF}\)

DE = EF.

\Rightarrow  \Delta EID = \Delta EIF (c.g.c)\(\Rightarrow \Delta EID = \Delta EIF (c.g.c)\)

b. Vì \Delta EID = \Delta EIF\(\Delta EID = \Delta EIF\) (chứng minh trên)

\Rightarrow  ID = IF\(\Rightarrow ID = IF\)

\Rightarrow\(\Rightarrow\) Tam giác DIF cân tại I.

Bài 3

Cho tam giác ABC cân tại A có \widehat{A} = 56^{0}\(\widehat{A} = 56^{0}\)

Hình 15

a. Tính \widehat{B}, \widehat{C}\(\widehat{B}, \widehat{C}\).

b. Gọi M, N lần lượt là trung điểm của AB, AC. Chứng minh tam giác AMN cân.

c. Chứng minh rằng MN // BC.

Gợi ý đáp án:

a. Vì tam giác ABC cân tại A \Rightarrow  \widehat{B} = \widehat{C} = (180^{0} - 56^{0}) : 2 = 62^{0}\(\Rightarrow \widehat{B} = \widehat{C} = (180^{0} - 56^{0}) : 2 = 62^{0}\)

b. Vì M, N lần lượt là trung điểm của AB, AC nên AM = MB = \frac{AB}{2}, AM = MC = \frac{AC}{2}\(AM = MB = \frac{AB}{2}, AM = MC = \frac{AC}{2}\)

mà AB = AC ( vì \Delta ABC\(\Delta ABC\) cân)

\Rightarrow  AM = AN\(\Rightarrow AM = AN\)

\Rightarrow\(\Rightarrow\) Tam giác AMN cân tại A.

c. Xét \Delta AMN\(\Delta AMN\) cân tại A có: \widehat{AMN} = \frac{180^{o}-\widehat{A}}{2}\(\widehat{AMN} = \frac{180^{o}-\widehat{A}}{2}\)

Xét \Delta ABC\(\Delta ABC\) cân tại A có: \widehat{ABC} = \frac{180^{o}-\widehat{A}}{2}\(\widehat{ABC} = \frac{180^{o}-\widehat{A}}{2}\)

\Rightarrow   \widehat{AMN}  = \widehat{ABC}\(\Rightarrow \widehat{AMN} = \widehat{ABC}\)

Mà 2 góc này ở vị trí đồng vị

\Rightarrow  MN // BC\(\Rightarrow MN // BC\).

Bài 4

Cho tam giác ABC cân tại A (hình 16). Tia phân giác của góc B cắt AC tại F, tia phân giác của góc C cắt AB tại E.

a) Chứng minh rằng \widehat{ABF} = \widehat{ACE}\(\widehat{ABF} = \widehat{ACE}\)

b) Chứng minh rằng tam giác AEF cân.

c) Gọi I là giao điểm của BF và CE. Chứng minh rằng tam giác IBC và tam giác IEF là những tam giác cân.

Hình 16

Gợi ý đáp án:

a) Vì tam giác ABC cân tại A

\Rightarrow \widehat{B} = \widehat{C}\(\Rightarrow \widehat{B} = \widehat{C}\)

\widehat{ABF} = \frac{1}{2}\widehat{B};  \widehat{ACE}= \frac{1}{2}\widehat{C}\(\widehat{ABF} = \frac{1}{2}\widehat{B}; \widehat{ACE}= \frac{1}{2}\widehat{C}\)

\Rightarrow \widehat{ABF} = \widehat{ACE}\(\Rightarrow \widehat{ABF} = \widehat{ACE}\)

b) Xét tam giác \Delta AEC\(\Delta AEC\)\Delta AFB\(\Delta AFB\) có:

\widehat{A}\(\widehat{A}\) chung

AB = AC

\widehat{ABF} = \widehat{ACE}\(\widehat{ABF} = \widehat{ACE}\)

\Rightarrow \Delta AEC = \Delta AFB (g.c.g)\(\Rightarrow \Delta AEC = \Delta AFB (g.c.g)\)

\Rightarrow AE = AF\(\Rightarrow AE = AF\)

\Rightarrow\(\Rightarrow\)Tam giác AEF cân tại A.

c) +) Chứng minh tương tự câu a ta có: \widehat{IBC} = \widehat{ICB}\(\widehat{IBC} = \widehat{ICB}\).

Xét tam giác IBC có: \widehat{IBC} = \widehat{ICB}\(\widehat{IBC} = \widehat{ICB}\)

\Rightarrow \Delta IBC\(\Rightarrow \Delta IBC\) cân tại I.

+) \Delta IBC\(\Delta IBC\) cân tại I nên IB = IC

\Delta AEC = \Delta AFB\(\Delta AEC = \Delta AFB\) nên BF = CE

Ta có: IE = CE - IC; IF = BF - BI

\Rightarrow IE = IF\(\Rightarrow IE = IF\)

\Rightarrow \Delta IEF\(\Rightarrow \Delta IEF\) cân tại I.

Bài 5

Phần thân của một móc treo quần áo có dạng hình tam giác cân (Hình 17a) được vẽ lại như Hình 17b. Cho biết AB = 20cm; BC = 28cm và \widehat{B} = 35^{0}\(\widehat{B} = 35^{0}\). Tìm số đo các góc còn lại và chu vi của tam giác ABC.

Hình 17

Gợi ý đáp án:

Vì tam giác ABC cân tại A

\Rightarrow AB = AC = 20cm; \widehat{B} = \widehat{C} = 35^{0}\(\Rightarrow AB = AC = 20cm; \widehat{B} = \widehat{C} = 35^{0}\)

\Rightarrow  \widehat{A} = 180^{0} - 35^{0} - 35^{0}= 110^{0}\(\Rightarrow \widehat{A} = 180^{0} - 35^{0} - 35^{0}= 110^{0}\)

Chu vi tam giác ABC = AB + AC + BC = 20 + 20 + 28 = 68 (cm).

Bài 6

Một khung cửa sổ hình tam giác có thiết kế như Hình 18a được vẽ lại như Hình 18b

Hình 18

a. Cho biết \widehat{A_{1}} = 42^{0}\(\widehat{A_{1}} = 42^{0}\). Tính số đo của \widehat{M_{1}}, \widehat{B_{1}}, \widehat{M_{2}}\(\widehat{M_{1}}, \widehat{B_{1}}, \widehat{M_{2}}\)

b. Chứng minh MN // BC, MP // AC.

c. Chứng minh bốn tam giác cân AMN, MBP, PMN, NPC bằng nhau.

Gợi ý đáp án:

a. Vì AM = AN => Tam giác AMN cân tại A

=> \widehat{M_{1}} = \frac{180^{o}-\widehat{A}}{2}=69^{0}\(=> \widehat{M_{1}} = \frac{180^{o}-\widehat{A}}{2}=69^{0}\).

+ Trong tam giác ABC có AB = BC (vì AM = AN = BM = CN; AB = AM + MB; AC = AN + NC)

=> Tam giác ABC cân tại A

=> \widehat{B_{1}} =\frac{180^{o}-\widehat{A}}{2}=69^{0}\(=> \widehat{B_{1}} =\frac{180^{o}-\widehat{A}}{2}=69^{0}\).

+ Trong tam giác MBP có MB = MP

=> Tam giác MBP cân tại M

=> \widehat{M_{2}} = 180^{o}- 2.\widehat{B_{1}} = 42^{0}\(=> \widehat{M_{2}} = 180^{o}- 2.\widehat{B_{1}} = 42^{0}\)

b. + Vì \widehat{M_{1}} = \widehat{B_{1}}\(\widehat{M_{1}} = \widehat{B_{1}}\)

Mà 2 góc này ở vị trí đồng vị

=> MN // BC

+ Ta có: \widehat{M_{2}} =  \widehat{A_{1}} = 42^{0}\(\widehat{M_{2}} = \widehat{A_{1}} = 42^{0}\)

mà hai góc ở vị trí đồng vị

=> MP // AC.

c. + Xét \Delta AMN\(\Delta AMN\)\Delta MBP\(\Delta MBP\) có:

AM = MB

\widehat{M_{2}} =  \widehat{A_{1}} = 42^{0}\(\widehat{M_{2}} = \widehat{A_{1}} = 42^{0}\)

AN = MP

\Rightarrow \Delta AMN = \Delta MBP (c.g.c)\(\Rightarrow \Delta AMN = \Delta MBP (c.g.c)\).

+ Xét \Delta PMN\(\Delta PMN\)\Delta NPC\(\Delta NPC\) có:

PM = NP

\widehat{MPN} =  \widehat{PNC}\(\widehat{MPN} = \widehat{PNC}\) (vì MP // AC, hai góc ở vị trí so le trong).

PN = NC

\Rightarrow \Delta PMN = \Delta NPC (c.g.c)\(\Rightarrow \Delta PMN = \Delta NPC (c.g.c)\)

+ Xét \Delta PMN\(\Delta PMN\)\Delta AMN\(\Delta AMN\) có:

MN chung

PM = AM

PN = AN

\Rightarrow \Delta PMN = \Delta AMN (c.c.c)\(\Rightarrow \Delta PMN = \Delta AMN (c.c.c)\).

Vậy bốn tam giác cân AMN, MBP, PMN, NPC bằng nhau.

Chia sẻ bởi: 👨 Lê Thị tuyết Mai
Liên kết tải về
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo
👨
    Đóng
    Chỉ thành viên Download Pro tải được nội dung này! Download Pro - Tải nhanh, website không quảng cáo! Tìm hiểu thêm