Toán 6 Luyện tập chung trang 54 Giải Toán lớp 6 trang 54 - Tập 1 sách Kết nối tri thức với cuộc sống

Giải Toán lớp 6 Luyện tập chung trang 54 bao gồm đáp án chi tiết cho từng phần, từng bài tập trong SGK Toán 6 Tập 1 Kết nối tri thức với cuộc sống.

Với lời giải chi tiết, trình bày khoa học, được biên soạn dễ hiểu, giúp các em nâng cao kỹ năng giải Toán 6, từ đó học tốt môn Toán lớp 6 hơn. Đồng thời, cũng giúp thầy cô nhanh chóng soạn giáo án Luyện tập chung trang 54 Chương 2: Tính chia hết trong tập hợp các số tự nhiên. Mời thầy cô và các em cùng theo dõi bài viết dưới đây của Eballsviet.com:

Lý thuyết cần nhớ để giải Toán 6 Luyện tập chung trang 54

- Muốn tìm UCLN của hai hay nhiều hơn 1 số ta thực hiện ba bước sau:

  • Bước 1: Phân tích mỗi số ra thừa số nguyên tố
  • Bước 2: Chọn ra các thừa số nguyên tố chung
  • Bước 3: Lập tích các thừa số đã chọn, mỗi thừa số lấy với số mũ nhỏ nhất của nó.

Tích đó là UCLN phải tìm.

- Để tìm bội chung nhỏ nhất bạn có thể làm theo các bước sau đây:

  • Bước 1: Phân tích mỗi số ra thừa số nguyên tố.
  • Bước 2: Chọn ra các thừa số nguyên tố chung và riêng.
  • Bước 3: Lập tích các thừa số đã chọn, mỗi thừa số lấy với số mũ lớn nhất của nó. Tích đó là bội chung nhỏ nhất cần tìm.

Đáp án Toán 6 trang 55 tập 1

Bài 2.45: a)

a934120152 987
b125170281
ƯCLN(a,b)3171011
BCNN(a, b)361028404202 987
ƯCLN(a, b).BCNN(a, b)1081 7348 4004202 987
a.b1081 7348 4004202 987

b) =; Với 2 số tự nhiên a, b bất kì, tích của ƯCLN (a, b) và BCNN (a, b) luôn bằng với tích của 2 số a và b.

Bài 2.46: 

a. Ước chung lớn nhất là 25, bội chung nhỏ nhất là 525

b. Ước chung lớn nhất là 3, bội chung nhỏ nhất là 13 860

Bài 2.47: 

a) Tối giản;
b) Chưa tối giản, phân số tối giản là \frac{2}{3}\(\frac{2}{3}\)

Bài 2.48: 2520 giây

Bài 2.49:

a) \frac{20}{45}\(\frac{20}{45}\); \frac{21}{45}\(\frac{21}{45}\)

b) \frac{225}{540}\(\frac{225}{540}\);\frac{252}{240}\(\frac{252}{240}\); \frac{80}{540}\(\frac{80}{540}\)

Bài 2.50: 8dm

Bài 2.51: 42

Bài 2.52: 2 3 .5 3

Hướng dẫn giải Toán 6 Kết nối tri thức với cuộc sống trang 55 tập 1

Bài 2.45

Cho bảng sau:

a934120152 987
b125170281
ƯCLN(a,b)3????
BCNN(a, b)36????
ƯCLN(a, b).BCNN(a, b)108????
a.b108????

a) Tìm các số thích hợp thay vào ô trống của bảng.

b) So sánh ƯCLN(a, b).BCNN(a, b) và a.b

Em rút ra kết luận gì?

Phương pháp giải:

Tìm ƯCLN và BCNN của 2 số bằng cách phân tích 2 số ra thành tích các thừa số nguyên tố. Sau đó

* Tìm ƯCLN: Ta chọn ra các thừa số nguyên tố chung, lập tích các thừa số vừa chọn, mỗi thừa số lấy với số mũ nhỏ nhất

* Tìm BCNN: Ta chọn ra các thừa số chung và riêng, lập tích các thừa số đã chọn, mỗi thừa số lấy với số mũ lớn nhất

Gợi ý đáp án:

a)

a934120152 987
b125170281
ƯCLN(a,b)3171011
BCNN(a, b)361028404202 987
ƯCLN(a, b).BCNN(a, b)1081 7348 4004202 987
a.b1081 7348 4004202 987

b) ƯCLN(a, b).BCNN(a, b) = a.b

Kết luận: với 2 số tự nhiên a, b bất kì, tích của ƯCLN(a, b) và BCNN(a, b) luôn bằng với tích của 2 số a và b.

Bài 2.46

Tìm ƯCLN và BCNN của:

a) 3.5252.7

b) 22.3.5; 32.7 và 3.5.11

Gợi ý đáp án:

a. Ta thấy các số 3.52và 52.7 có thừa số nguyên tố chung là 5 và có số mũ nhỏ nhất là 2

=> Ước chung lớn nhất là 52 = 25

=> Bội chung nhỏ nhất là: 3 . 52 . 7 = 525

b. Ta thấy các số 22.3.5; 32.7và 3.5.11 có thừa số nguyên tố chung là 3 và có số mũ nhỏ nhất là 1

=> Ước chung lớn nhất là 31 = 3

=> Bội chung nhỏ nhất là: 22 .32 . 5 . 7 . 11 = 13 860

Bài 2.47

Các phân số sau đã tối giản chưa? Nếu chưa, hãy rút gọn về phân số tối giản

a) \frac{15}{17}\(\frac{15}{17}\)                  b) \frac{70}{105}\(\frac{70}{105}\)

Phương pháp giải:

Phân số tối giản là phân số có ước chung lớn nhất của tử số và mẫu số là 1.

Gợi ý đáp án:

a) \frac{15}{17}\(\frac{15}{17}\)

Ta có ƯCLN(15; 17) = 1 nên phân số đã cho tối giản.
b) \frac{70}{105}\(\frac{70}{105}\)
Ta có ƯCLN(70; 105) = 35 nên phân số đã cho chưa tối giản
\frac{70}{105}=\frac{70: 35}{105: 35}=\frac{2}{3}\(\frac{70}{105}=\frac{70: 35}{105: 35}=\frac{2}{3}\) là phân số tối giản

Bài 2.48

Hai vận động viên chạy xung quanh một sân vận động. Hai vận động viên xuất phát tại cùng một thời điểm, cùng một vị trí và chạy cùng chiều. Vận động viên thứ nhất chạy một vòng sân hết 360 giây, vận động viên thứ hai chạy một vòng sân mất 420 giây. Hỏi sau bao nhiêu phút họ gặp nhau, biết tốc độ di chuyển của họ không đổi?

Phương pháp giải:

Các số đã ở dạng tích các thừa số nguyên tố.

* Tìm ƯCLN: Ta chọn ra các thừa số nguyên tố chung, lập tích các thừa số vừa chọn, mỗi thừa số lấy với số mũ nhỏ nhất.

* Tìm BCNN: Ta chọn ra các thừa số chung và riêng, lập tích các thừa số đã chọn, mỗi thừa số lấy với số mũ lớn nhất.

Gợi ý đáp án:

Thời gian họ gặp nhau chính là BCNN (360, 420)

360 = 23.32.5

420 = 22.3.5.7

Do đó BCNN (360, 420) = 23.32.5.7=2520

Đổi 2520 giây = 42 phút. Vậy sau 42 phút thì họ gặp nhau.

Bài 2.49

Quy đồng mẫu các phân số sau:

a) \frac49\(\frac49\)\frac7{15}\(\frac7{15}\)

b) \frac5{12}\(\frac5{12}\); \frac7{15}\(\frac7{15}\)\frac4{27}\(\frac4{27}\)

Gợi ý đáp án:

a) Ta có BCNN(9, 15) = 45 nên chọn mẫu chung là 45. Ta được:

\frac{4}{9}=\frac{4.5}{9.5}=\frac{20}{45}\(\frac{4}{9}=\frac{4.5}{9.5}=\frac{20}{45}\)

\frac{7}{15}=\frac{7.3}{15.3}=\frac{21}{45}\(\frac{7}{15}=\frac{7.3}{15.3}=\frac{21}{45}\)

b) Ta có BCNN(12; 15; 27) = 540

\frac{5}{12}=\frac{5.45}{12.45}=\frac{225}{540}\(\frac{5}{12}=\frac{5.45}{12.45}=\frac{225}{540}\)

\frac{7}{15}=\frac{7.36}{15.36}=\frac{252}{540}\(\frac{7}{15}=\frac{7.36}{15.36}=\frac{252}{540}\)

\frac{4}{27}=\frac{4.20}{27.20}=\frac{80}{540}\(\frac{4}{27}=\frac{4.20}{27.20}=\frac{80}{540}\)

Bài 2.50

Từ ba tấm gỗ có độ dài 56 dm, 48 dm và 40 dm, bác thợ mộc muốn cắt thành các thanh gỗ có độ dài như nhau mà không để thừa mẩu gỗ nào. Hỏi bác cắt như thế nào để được các thanh gỗ có độ dài lớn nhất có thể?

Gợi ý đáp án:

Các thanh gỗ có độ dài lớn nhất được cắt ra là ƯCLN(56, 48, 40)

Ta có: 56 = 23.7 ; 48 = 24.3 ; 40 = 23.5

Ta thấy thừa số nguyên tố chung là 2 và có số mũ nhỏ nhất là 23

Do đó ƯCLN(56, 48, 40) = 8

Vậy chiều dài các thanh gỗ lớn nhất có thể cắt là 8 dm

Bài 2.51

Học sinh lớp 6A khi xếp thành hàng 2, hàng 3, hàng 7 đều vừa đủ hàng. Hỏi số học sinh lớp 6A là bao nhiêu, biết rằng số học sinh nhỏ hơn 45.

Gợi ý đáp án:

Học sinh lớp 6A khi xếp thành hàng 2, hàng 3, hàng 7 đều vừa đủ hàng.

Do đó số học sinh lớp 6A là BC(2, 3, 7)

BCNN(2, 3, 7) = 42 nên BC(2, 3, 7) = {0; 42; 84, ...}

Mà số học sinh nhỏ hơn 45 nên số học sinh lớp 6A là 42.

Bài 2.52

Hai số có BCNN là 23.3.53 và ƯCLN là 22.5. Biết một trong hai số bằng 22.3.5, tìm số còn lại.

Gợi ý đáp án:

Ta đã biết tích của BCNN và ƯCLN của hai số tự nhiên bất kì bằng tích của chúng.

Do đó tích của hai số đã cho là 23.3.5322.5 = 25.3.54

Mà một trong hai số bằng 22.3.5 nên số còn lại là 23.53

Chia sẻ bởi: 👨 Đỗ Vân
Liên kết tải về

Link Download chính thức:

1 Bình luận
Sắp xếp theo
👨
  • lan fan naruto v one piece
    lan fan naruto v one piece

    bài 2.48 giải còn thiếu ạ

    phải đổi ra phút nữa, người ta hỏi bao nhiêu phút ấy.

    Thích Phản hồi 30/10/22
    • Tiểu Ngọc
      Tiểu Ngọc

      mình thấy sửa rồi nha

      Thích Phản hồi 31/10/22
Chỉ thành viên Download Pro tải được nội dung này! Download Pro - Tải nhanh, website không quảng cáo! Tìm hiểu thêm