Toán 6 Bài 10: Số nguyên tố Giải Toán lớp 6 trang 41, 42 - Tập 1 sách Kết nối tri thức

Giải bài tập Toán lớp 6 Bài 10: Số nguyên tố với lời giải chi tiết, rõ ràng theo khung chương trình sách giáo khoa Toán 6 Tập 1 Kết nối tri thức trang 38, 39, 40, 41, 42. Qua đó, giúp các em ôn tập và củng cố các dạng bài tập, rèn luyện kỹ năng giải môn Toán.

Giải Toán 6 Bài 10 chi tiết phần luyện tập, vận dụng, hoạt động, tranh luận, bài tập, đồng thời còn giúp các em hệ thống lại toàn bộ kiến thức lý thuyết trọng tâm của Bài 10 Chương II: Tính chia hết trong tập hợp các số tự nhiên. Bên cạnh đó, cũng giúp thầy cô soạn giáo án cho học sinh của mình. Vậy mời thầy cô và các em cùng theo dõi bài viết dưới đây của Eballsviet.com:

Giải Toán 6 Kết nối tri thức Mở đầu

Mẹ mua một bó hoa có 11 bông hoa hồng. Bạn Mai giúp mẹ cắm các bông hoa này vào các lọ nhỏ sao cho số bông hoa trong mỗi lọ nhỏ là như nhau. Mai nhận thấy không thể cắm đều số bông hoa này vào các lọ hoa (mỗi lọ có nhiều hơn một bông) cho dù số lọ hoa là 2; 3; 4; 5;… Nhưng nếu bỏ ra một bông còn 10 bông thì lại cắm đều được vào 2 lọ, mỗi lọ co 5 bông hoa.

Vậy số 11 và số 10 có gì khác nhau, điều này có liên quan gì đến số các ước của chúng không?

Gợi ý đáp án:

Ta có: Các ước của 11 là: 1; 11

Các ước của 10 là: 1; 2; 5; 10

Do đó ta thấy số 11 chỉ có hai ước là 1 và chính nó, còn số 10 thì có nhiều hơn 2 ước (cụ thể ở đây là 4 ước số tự nhiên).

Qua bài học này, ta sẽ biết được hai số 11 và 10 là khác nhau. Số 11 gọi là số nguyên tố và số 10 gọi là hợp số.

Phần Hoạt động

Hoạt động 1 trang 38 Toán 6 tập 1

Tìm các ước và số ước của các số trong bảng 2.1

SốCác ướcSố ước
2
3
4
5
6
7
8
9
101, 2, 5, 104
111, 112

Gợi ý đáp án:

SốCác ướcSố ước
21, 22
31, 32
41, 2, 43
51, 52
61, 2, 3, 64
71, 72
81, 2, 4, 84
91, 3, 93
101, 2, 5, 104
111, 112

Hoạt động 2 trang 38 Toán 6 tập 1

Hãy chia các số cho trong bảng 2.1 thành hai nhóm: nhóm A gồm các số chỉ có hai ước, nhóm B gồm các số có nhiều hơn hai ước.

Gợi ý đáp án:

Từ bảng 2.1 hoàn thành trên, ta có bảng sau:

Nhóm A gồm các số chỉ có hai ước:

2, 3, 5, 7, 11

Nhóm B gồm các số có nhiều hơn hai ước:

4, 6, 8, 9, 10

Hoạt động 3 trang 38 Toán 6 tập 1

Suy nghĩ và trả lời câu hỏi:

a) Số 1 có bao nhiêu ước?

b) Số 0 có chia hết cho 2; 5; 7; 2 017; 2 018 không? Em có nhận xét gì về số ước của 0?

Gợi ý đáp án:

a) Số 1 có 1 ước đó chính là 1.

b) Số 0 chia hết cho 2; 5; 7; 2 017; 2 018 vì số 0 chia cho số nào khác 0 cũng bằng 0.

Do đó số 0 có vô số ước.

Phần Luyện tập

Luyện tập 1 trang 39 Toán 6 tập 1

Em hãy tìm nhà thích hợp cho các ô trong bảng 2.1

SốCác ướcSố ước
21, 22
31, 32
41, 2, 43
51, 52
61, 2, 3, 64
71, 72
81, 2, 4, 84
91, 3, 93

Gợi ý đáp án:

Số nguyên tố: 11, 13, 17, 19, 23, ...

Hợp số: 10, 12, 14, 15, 16, 18, 20, 21, 22, ...

Luyện tập 2 trang 39 Toán 6 tập 1

Trong các số cho dưới đây, số nào là số nguyên tố, số nào là hợp số? Vì sao?

a) 1 930                      b) 23

Gợi ý đáp án:

a) Số 1 930 có chữ số tận cùng là

=> 1 930 chia hết cho 2

Vậy 1 930 là hợp số

b) Số 23 là số nguyên tố vì nó lớn hơn 1 và chỉ có 2 ước là 1 và chính nó.

Luyện tập 3 trang 41 Toán 6 tập 1

Phân tích các số sau ra thừa số nguyên tố theo sơ đồ cột:

a) 36          b) 105

Gợi ý đáp án:

36

2

18

2

9

3

3

3

1

Kết quả: 36 = 22.32

105

3

35

5

7

7

1

Kết quả: 105 = 3.5.7

Phần Câu hỏi

Câu hỏi 1 trang 40 Toán 6 tập 1

Bạn Việt phân tích số 60 ra thừa số nguyên tố và cho kết quả 60 = 3 . 4. 5. Kết quả của Việt đúng hay sai? Nếu sai, em hãy sửa lại cho đúng.

Trả lời:

Vì 4 có 3 ước là: 1, 2, 4 nên 4 là hợp số.

Do đó trong phân tích 60 ra thừa số nguyên tố bạn Việt cho kết quả 60 = 3 . 4. 5 là sai.

Sửa lại kết quả đúng là:

60 = 2 . 2 . 3. 5 = 22.3.5

Câu hỏi 2 trang 40 Toán 6 tập 1

Tìm các số còn thiếu trong phân tích số 18 ra thừa số nguyên tố theo sơ đồ cây ở hình 2.3

Câu hỏi 2

Trả lời:

+) Vì 18 = 3 x 6 nên ở ❔ đầu tiên từ trên xuống là 6

+) Vì 6 = 2 x 3 nên ở ❔ cuối cùng là 3

Vậy: Câu hỏi 2

Câu hỏi 3 trang 41 Toán 6 tập 1

Tìm các số còn thiếu trong phân tích số 30 ra thừa số nguyên tố theo sơ đồ cột ở hình bên:

Câu hỏi 3

+) Vì 30 : 2 = 15 nên ở ❔ đầu tiên từ trên xuống là 15

+) Vì 5 : ❔ = 1

❔ = 5 : 1 = 5 nên ❔ cuối cùng là 5

Câu hỏi 3

Phần Tranh luận

Bạn nào đúng nhỉ?

Lời giải:

Vì người ta đã quy ước dạng phân tích ra thừa số nguyên tố của một số nguyên tố là chính nó.

Mà 7 chỉ có hai ước là 1 và 7. Do đó 7 là số nguyên tố nên số 7 phân tích ra thừa số nguyên tố là 7.

Vậy bạn Vuông xanh đúng.

Phần Bài tập

Bài 2.17 trang 41 Toán 6 tập 1

Phân tích các số sau ra thừa số nguyên tố: 70; 115.

Gợi ý đáp án:

  • 70 = 2 . 5. 7
  • 115 = 5 . 23

Bài 2.18 trang 41 Toán 6 tập 1

Kết quả phân tích các số 120, 102 ra thừa số nguyên tố của Nam như sau:

120 = 2.3.4.5 ; 102 = 2.51

Theo em, kết quả của Nam đúng hay sai? Nếu sai, em hãy sửa lại cho đúng.

Gợi ý đáp án:

Kết quả của Nam là sai. Sửa lại:

  • 120 = 23.3.5
  • 102 = 2.3.17

Bài 2.19 trang 41 Toán 6 tập 1

Các khẳng định sau đúng hay sai? Vì sao?

  1. Ước nguyên tố của 30 là 5 và 6
  2. Tích của hai số nguyên bất kì luôn là số lẻ.
  3. Ước nguyên tố nhỏ nhất của số chẵn là 2
  4. Mọi bội của 3 đều là hợp số
  5. Mọi số chẵn đều là hợp số

Gợi ý đáp án:

  1. Sai. Vì số 6 là hợp số.
  2. Sai. Vì tích của một số nguyên tố bất kì với số 2 luôn là số chẵn.
  3. Đúng. Vì 2 là số nguyên tố nhỏ nhất và mọi số chẵn đều chia hết cho 2.
  4. Sai. Vì 3 là bội của 3 nhưng nó là số nguyên tố
  5. Sai. Vì 2 là số chẵn nhưng nó là số nguyên tố

Bài 2.20 trang 42 Toán 6 tập 1

Kiểm tra xem các số sau là hợp số hay số nguyên tố bằng cách dùng dấu hiệu của chia hết hoặc tra bảng số nguyên tố:

89 , 97 , 125 , 541 , 2 013 , 2 018

Gợi ý đáp án:

  • Các số nguyên tố là: 89 ; 97 ; 541
  • Các hợp số là: 125 ; 2 013; 2 018

Bài 2.21 trang 42 Toán 6 tập 1

Hãy phân tích A ra thừa số nguyên tố:

A = 44.95

Gợi ý đáp án:

A = 44.95

= 4.4.4.4.9.9.9.9.9

= 22.22.22.22.32.32.32.32.32

= 22+2+2+2.32+2+2+2+2

= 28.310

Bài 2.22 trang 42 Toán 6 tập 1

Tìm các số còn thiếu trong các sơ đồ phân tích một số ra thừa số nguyên tố sau:

Bài 2.22

Gợi ý đáp án:

Bài 2.22

Bài 2.23 trang 42 Toán 6 tập 1

Một lớp có 30 học sinh. Cô giáo muốn chia lớp thành các nhóm để thực hiện các dự án học tập nhỏ. Biết rằng, các nhóm đều có số người bằng nhau và có nhiều hơn 1 người trong mỗi nhóm. Hỏi mỗi nhóm có thể có bao nhiêu người?

Gợi ý đáp án:

Phân tích 30 ra thừa số nguyên tố ta được: 30 = 2.3.5

Ta có bảng sau:

Số nhómSố người một nhóm
215
310
56
65
103
152

Bài 2.24 trang 42 Toán 6 tập 1

Trong nghi lễ thượng cờ lúc 6 giờ sáng và hạ cờ lúc 21 giờ hàng ngày ở Quảng trường Ba Đình, đội tiêu binh có 34 người gồm 1 sĩ quan chỉ huy đứng đầu và 33 chiến sĩ. Hỏi có bao nhiêu cách sắp xếp 33 chiến sĩ thành các hàng, sao cho mỗi hàng có số người như nhau?

Lễ thượng cờ ở Quảng trường Ba Đình
Lễ thượng cờ ở Quảng trường Ba Đình
Gợi ý đáp án:

Các cách sắp xếp 33 chiến sĩ là:

  • 11 hàng mỗi hàng 3 người
  • 3 hàng mỗi hàng 11 người

Vậy có 2 cách sắp xếp.

Chia sẻ bởi: 👨 Tiểu Vân
Liên kết tải về

Link Download chính thức:

5 Bình luận
Sắp xếp theo
👨
  • Loan Anh TV
    Loan Anh TV

    tot tao hoi the bai uoc chung va uoc chung lon nhat lam   nhu the nao?

    Thích Phản hồi 30/06/22
    • Nguyễn Trúc
      Nguyễn Trúc

      (Y) cho 1like

      Thích Phản hồi 19/10/22
      • Huong Nguyen
        Huong Nguyen

        Tạ Ngọc Trinh cần kẻ bảng nha

        Thích Phản hồi 17/10/23
        • Tạ Ngọc Thịnh
          Tạ Ngọc Thịnh

          còn kẻ bảng ở bài 2.24 thì sao

          Thích Phản hồi 18/07/23
          • Minh Hằng
            Minh Hằng

            like🥰

            Thích Phản hồi 23/03/23
            Chỉ thành viên Download Pro tải được nội dung này! Download Pro - Tải nhanh, website không quảng cáo! Tìm hiểu thêm