Toán 6 Bài 6: Lũy thừa với số mũ tự nhiên Giải Toán lớp 6 trang 24 - Tập 1 sách Kết nối tri thức

Giải bài tập Toán lớp 6 Bài 6: Lũy thừa với số mũ tự nhiên với lời giải chi tiết, rõ ràng theo khung chương trình sách giáo khoa Toán 6 Tập 1 Kết nối tri thức trang 22, 23, 24. Qua đó, giúp các em ôn tập và củng cố các dạng bài tập, rèn luyện kỹ năng giải môn Toán.

Giải Toán 6 Bài 6 chi tiết phần hoạt động, luyện tập, vận dụng, bài tập, đồng thời còn giúp các em hệ thống lại toàn bộ kiến thức lý thuyết trọng tâm của Bài 6 Chương I: Tập hợp các số tự nhiên. Bên cạnh đó, cũng giúp thầy cô soạn giáo án cho học sinh của mình. Vậy mời thầy cô và các em cùng theo dõi bài viết dưới đây của Eballsviet.com:

Phần Mở đầu

Truyền thuyết Ấn Độ kể rằng, người phát minh ra bàn cờ vua đã chọn phần thưởng là số thóc rải trên 64 ô của bàn cờ vua như sau: ô thứ nhất để 1 hạt thóc, ô thứ hai để 2 hạt, ô thứ ba để 4 hạt, ô thứ tư để 8 hạt, …Cứ như thế, số hạt ở ô sau gấp đôi số hạt ở ô trước. Liệu nhà vua có đủ thóc để thưởng cho nhà phát minh đó hay không?

Gợi ý đáp án:

Quan sát hình ảnh bàn cờ vua sau:

Quan sát hình ảnh bàn cờ vua

Ta thấy bàn cờ vua có 64 ô.

Sau bài học về lũy thừa này, ta có:

Số thóc rải trên 64 ô bàn cờ là:

+ Ô thứ nhất: 1 hạt thóc hay 20 hạt thóc

+ Ô thứ hai: 2 hạt thóc hay 21 hạt thóc

+ Ô thứ ba: 4 hạt thóc hay 4 = 2 . 2 = 22 hạt thóc

+ Ô thứ tư: 8 hạt thóc hay 8 = 2 . 2 . 2 = 23 hạt thóc

+ Tương tự đến ô thứ 5: 24 hạt thóc

+ Ô thứ 6 là: 25 hạt thóc

….

+ Ô thứ 64 là: 263 hạt thóc

Tổng số hạt thóc trên 64 ô bàn cờ là: S = 20 + 21 + 22 + 23 + 24 + …. + 263

Người ta đã tính được S = 264 - 1 (hạt thóc) (sau này lên lớp trên các em sẽ được học cách tính) và toàn bộ khối lượng thóc này nặng tới 369 tỉ tấn. Một con số khổng lồ.

Vậy nhà vua chắc chắn không đủ thóc để thưởng cho nhà phát minh đó.

Phần Hoạt động

Hoạt động 1 trang 22 Toán 6 tập 1

Bảng sau đây chỉ ra cách tính số hạt thóc ở một số ô trong bàn cờ trong bài toán mở đầu

Ô thứPhép tính tìm số hạt thócSố hạt thóc
111
22.22
32.2.24
42.2.2.28
52.2.2.2.216
..........

Tìm số hạt thóc ở ô thứ 8, ta phải thực hiện phép nhân có bao nhiêu thừa số 2?

Gợi ý đáp án:

Để tìm số hạt thóc ở ô số 8, ta phải thực hiện phép nhân có 7 thừa số 2.

Hoạt động 2 trang 23 Toán 6 tập 1

a) Viết kết quả phép nhân sau dưới dạng một luỹ thừa của 7:
2 3 7 .7 (7.7).(7.7.7) ?

b) Nêu nhận xét về mối liên hệ giữa các số mũ của 7 trong hai thừa số và tích tìm được ở câu a)

a12345678910
a 2??????????

Gợi ý đáp án:

a) 7 2 .7 3 = ( 7.7 ) . ( 7.7.7 ) = 7 5

b) Nhận xét: Tổng số mũ của 7 trong hai thừa số bằng số mũ của tích tìm được.

Hoạt động 3 trang 24 Toán 6 tập 1

a) Giải thích vì sao có thể viết 65 = 63 . 62

b) Sử dụng câu a) để suy ra 65 : 63 = 62. Nêu nhận xét về mối liên hệ giữa các số mũ của 6 trong số bị chia, số chia và thương.

c) Viết thương của phép chia 107 : 104 dưới dạng lũy thừa của 10

Gợi ý đáp án:

a) Ta có: 63 . 62 = 63 + 2 = 65 nên có thể viết 65 = 63 . 62

b) Ta có 65 = 63 . 62 nên 65 : 63 = 62

Ta thấy 5 - 3 = 2

Nên ta có nhận xét: Hiệu số mũ của 6 trong số bị chia và số chia bằng số mũ của 6 trong thương tìm được.

c) Ta nhận thấy 107 = 104 + 3 = 104 . 103 nên 107 : 104 = 103

Phần Luyện tập

Luyện tập 1 trang 23 Toán 6 tập 1

Hoàn thành bảng bình phương của các số tự nhiên từ 1 đến 10

a12345678910
a 2 ??????????

Gợi ý đáp án:

a12345678910
a 2 149162536496481100

Luyện tập 2 trang 23 Toán 6 tập 1

Gợi ý đáp án:

a) 5 3 .5 7 = 5 3 + 7 = 5 10

b) 2 4 .2 5 .2 9 = 2 4 + 5 + 9 = 2 18

c) 10 2 .10 4 .10 6 .10 8 = 10 2 + 4 + 6 + 8 = 10 20

Luyện tập 3 trang 24 Toán 6 tập 1

Gợi ý đáp án:

a) 7 6 : 7 4 = 7 6 − 4 = 7 2

b) 1 091 100 : 1 091 100 = 1 091 100 − 100 = 1 091 0

Phần Vận dụng

1. Tính số hạt thóc có trong ô thứ 7 của bàn cờ nói trong bài toán mở đầu

2. Hãy viết mỗi số tự nhiên sau thành tổng giá trị các chữ số của nó bằng cách dùng các lũy thừa của 10 theo mẫu

4275 = 4 .103 + 2.102 + 5 .10 + 7

a) 23 197

b) 203 184

Gợi ý đáp án:

1. Số hạt thóc có trong ô thứ 7 của bàn cờ nói trong bài toán mở đầu:

2.2.2.2.2.2 = 2 6 = 64

2. a) 23 197 = 2 . 10 4 + 3.10 3 + 1.10 2 + 9.10 1 + 7

b) 203 184 = 2 . 10 5 + 0.10 4 + 3.10 3 + 1.10 2 + 8.10 1 + 4

Phần Bài tập

Bài 1.36 trang 24 Toán 6 tập 1

Viết các tích sau dưới dạng một lũy thừa:

a) 9 . 9 . 9 . 9 . 9

b) 10 . 10 . 10 . 10

c) 5 . 5 . 5 . 25

c) a . a . a . a . a . a

Gợi ý đáp án:

a) 9 . 9 . 9 . 9 . 9 = 95

b) 10 . 10 . 10 . 10 = 104

c) 5 . 5 . 5 . 25 = 5 . 5 . 5 . 5 . 5 = 55

c) a . a . a . a . a . a = a6

Bài 1.37 trang 24 Toán 6 tập 1

Hoàn thành bảng sau vào vở:

Lũy thừaCơ sốSố mũGiá trị của lũy thừa
43???
?35?
?2?128

Gợi ý đáp án:

Lũy thừaCơ sốSố mũGiá trị của lũy thừa
434364
3535243
2727128

Bài 1.38 trang 24 Toán 6 tập 1

Tính:

a) 25                  b) 33                 c) 52                   d) 109

Gợi ý đáp án:

a) 25 = 32

b) 33 = 27

c) 52 = 25

d) 109 = 1 000 000 00

Bài 1.39 trang 24 Toán 6 tập 1

Viết các số sau thành tổng giá trị các chữ số của nó bằng cách dùng các lũy thừa của 10: 215; 902; 2 020; 883 001

Gợi ý đáp án:

Ta có:

\begin{matrix}
  215 = 200 + 10 + 5 = {2.10^2} + {10^1} + 5 \hfill \\
  902 = 900 + 2 = 9.100 + 2 = {9.10^2} + 2 \hfill \\
  2020 = 2.1000 + 2.10 = {2.10^3} + {2.10^1} \hfill \\
  883001 = 800000 + 80000 + 3000 + 1 = {8.10^5} + {8.10^4} + {3.10^3} + 1 \hfill \\ 
\end{matrix}\(\begin{matrix} 215 = 200 + 10 + 5 = {2.10^2} + {10^1} + 5 \hfill \\ 902 = 900 + 2 = 9.100 + 2 = {9.10^2} + 2 \hfill \\ 2020 = 2.1000 + 2.10 = {2.10^3} + {2.10^1} \hfill \\ 883001 = 800000 + 80000 + 3000 + 1 = {8.10^5} + {8.10^4} + {3.10^3} + 1 \hfill \\ \end{matrix}\)

Bài 1.40 trang 24 Toán 6 tập 1

Tính {11^2};{111^2}\({11^2};{111^2}\). Từ đó hãy dự đoán kết quả của {1111^2}\({1111^2}\)

Gợi ý đáp án:

Ta có:

\begin{matrix}
  {11^2} = 11.11 = 121 \hfill \\
  {111^2} = 111.111 = 12321 \hfill \\ 
\end{matrix}\(\begin{matrix} {11^2} = 11.11 = 121 \hfill \\ {111^2} = 111.111 = 12321 \hfill \\ \end{matrix}\)

Dự đoán: {1111^2} = 1234321\({1111^2} = 1234321\)

Bài 1.41 trang 24 Toán 6 tập 1

Biết {2^{10}} = 1024\({2^{10}} = 1024\). Hãy tính {2^9}\({2^9}\){2^{11}}\({2^{11}}\)

Gợi ý đáp án:

Ta có:

\begin{matrix}
  {2^{10}} = {2^{9 + 1}} = {2^9}{.2^1} = {2^9}.2 = 1024 \hfill \\
   \Rightarrow {2^9} = 1024:2 = 512 \hfill \\ 
\end{matrix}\(\begin{matrix} {2^{10}} = {2^{9 + 1}} = {2^9}{.2^1} = {2^9}.2 = 1024 \hfill \\ \Rightarrow {2^9} = 1024:2 = 512 \hfill \\ \end{matrix}\)

Ta lại có:

\begin{matrix}
  {2^{10}} = {2^{11 - 1}} = {2^{11}}:{2^1} = {2^{11}}:2 = 1024 \hfill \\
   \Rightarrow {2^{11}} = 1024.2 = 2048 \hfill \\ 
\end{matrix}\(\begin{matrix} {2^{10}} = {2^{11 - 1}} = {2^{11}}:{2^1} = {2^{11}}:2 = 1024 \hfill \\ \Rightarrow {2^{11}} = 1024.2 = 2048 \hfill \\ \end{matrix}\)

Bài 1.42  trang 24 Toán 6 tập 1

Tính:    a. {5^7}{.5^3}\({5^7}{.5^3}\)            b. {5^8}:{5^4}\({5^8}:{5^4}\)

Gợi ý đáp án:

a. {5^7}{.5^3} = {5^{7 + 3}} = {5^{10}}\({5^7}{.5^3} = {5^{7 + 3}} = {5^{10}}\)

b. {5^8}:{5^4} = {5^{8 - 4}} = {5^4}\({5^8}:{5^4} = {5^{8 - 4}} = {5^4}\)

Bài 1.43 trang 24 Toán 6 tập 1

Ta có: 1 + 3 + 5 = 9 = 32

Viết các tổng sau dưới dạng bình phương của một số tự nhiên:

a. 1 + 3 + 5 + 7              b. 1 + 3 + 5 + 7 + 9

Gợi ý đáp án:

a. 1 + 3 + 5 + 7 = 16 = 42

b. 1 + 3 + 5 + 7 + 9 = 25 = 52

Bài 1.44 trang 24 Toán 6 tập 1

Trái Đất có khối lượng khoảng 60.1020 tấn. Mỗi giây Mặt Trời tiêu thụ 6.106 tấn khí Hydrogen (theo vnexpress.net). Hỏi Mặt Trời cần bao nhiêu giây để tiêu thụ một lượng khí hydrogen có khối lượng bằng khối lượng Trái Đất?

Gợi ý đáp án:

Thời gian để Mặt Trời tiêu thụ một lượng khí hdrogen có khối lượng bằng khối lượng Trái Đất là:

\left( {{{60.10}^{20}}} \right):\left( {{{6.10}^6}} \right) = \frac{{60}}{6}{.10^{20 - 6}} = {10.10^{14}} = {10^{1 + 14}} = {10^{15}}\left( s \right)\(\left( {{{60.10}^{20}}} \right):\left( {{{6.10}^6}} \right) = \frac{{60}}{6}{.10^{20 - 6}} = {10.10^{14}} = {10^{1 + 14}} = {10^{15}}\left( s \right)\)

Bài 1.45 trang 24 Toán 6 tập 1

Theo các nhà khoa học, mỗi giây cơ thể con người trung bình tạo ra khoảng 25.105 tế bào hồng cầu (theo www.healthline.com). Hãy tính xem mỗi giờ có bao nhiêu tế bào hồng cầu được tạo ra?

Gợi ý đáp án:

Đổi 1 giờ = 3600 giây

Mỗi giờ số tế bào hồng cầu được tạo ra là:

{25.10^5}.3600 = {90000.10^5} =9.10^4 .10^5=9.10^{4+5}=9.10^9\({25.10^5}.3600 = {90000.10^5} =9.10^4 .10^5=9.10^{4+5}=9.10^9\) (tế bào)

Lý thuyết Lũy thừa với số mũ tự nhiên

+ Lũy thừa bậc n của số tự nhiên a là tích của n thừa số bằng nhau, mỗi thừa số bằng a:

an = Toán 6(n ∈ N*)

an đọc là “a mũ n” hoặc “ a lũy thừa n”, a là cơ số, n là số mũ.

Chú ý: Ta có a1 = a.

a2 cũng được gọi là a bình phương (hay bình phương của a);

a3 cũng được gọi là a lập phương (hay lập phương của a).

Ví dụ 1. Viết các biểu thức sau dưới dạng lũy thừa:

a) 4.4.4.4.4.4.4;

b) 11.11.11;

c) 8.8.8.8.8.

Lời giải

a) 4.4.4.4.4.4.4 = 47;

b) 11.11.11 = 113;

c) 8.8.8.8.8 = 85.

+ Nhân hai lũy thừa cùng cơ số, ta giữ nguyên cơ số và công các số mũ:

am.an = am+n.

Ví dụ 2. Viết kết quả của các phép tính sau dưới dạng một lũy thừa:

a) a2.a3.a5;

b) 23.28.27;

c) 7.72.723.

Lời giải

a) a2.a3.a5 = a2 + 3 + 5 = a10;

b) 23.28.27 = 23 + 8 + 7 = 218;

c) 7.72.723 = 71 + 2 + 23 = 726.

Chia hai lũy thừa cùng cơ số, ta giữ nguyên cơ số và trừ các số mũ:

am:an = am-n.

Chia sẻ bởi: 👨 Hồng Linh
Liên kết tải về

Link Download chính thức:

2 Bình luận
Sắp xếp theo
👨
  • le nam
    le nam

    hahahahahahaha😀

    Thích Phản hồi 12/09/23
    • Hoàng Hà Vy
      Hoàng Hà Vy

      tốt😇

      Thích Phản hồi 24/09/23
      Chỉ thành viên Download Pro tải được nội dung này! Download Pro - Tải nhanh, website không quảng cáo! Tìm hiểu thêm