Toán 10 Bài 4: Ba đường conic trong mặt phẳng tọa độ Giải SGK Toán 10 trang 70 - Tập 2 sách Chân trời sáng tạo
Giải Toán 10 Bài 4: Ba đường conic trong mặt phẳng tọa độ sách Chân trời sáng tạo là tài liệu vô cùng hữu ích giúp các em học sinh lớp 10 có thêm nhiều gợi ý tham khảo, dễ dàng đối chiếu kết quả khi làm bài tập toán trang 70, 71 tập 2.
Giải SGK Toán 10 Bài 4 trang 70, 71 Chân trời sáng tạo tập 2 được biên soạn chi tiết, bám sát nội dung trong sách giáo khoa. Mỗi bài toán đều được giải thích cụ thể, chi tiết. Qua đó giúp các em củng cố, khắc sâu thêm kiến thức đã học trong chương trình chính khóa; có thể tự học, tự kiểm tra được kết quả học tập của bản thân.
Giải Toán 10: Ba đường conic trong mặt phẳng tọa độ
Giải Toán 10 trang 70, 71 Chân trời sáng tạo - Tập 2
Bài 1 trang 70
Viết phương trình chính tắc của:
a. Elip có trục lớn bằng 20 và trục nhỏ bằng 16;
b. Hypebol có tiêu cự 2c = 20 và độ dài trục thực 2a = 12;
c. Parabol có tiêu điểm \(F(\frac{1}{2}; 0).\)
Gợi ý đáp án
a. Ta có 2a = 20; 2b = 16 \(\Rightarrow a = 10; b = 8.\)
Vậy phương trình chính tắc của elip (E) là: \(\frac{x^{2}}{100} + \frac{y^{2}}{64} = 1.\)
b. Ta có: \(2c = 20; 2a = 12 \Rightarrow c = 10; a = 6 \Rightarrow b = \sqrt{c^{2} - a^{2}} = \sqrt{10^{2} - 6^{2}} = 8\)
Vậy phương trình chính tắc của hypebol (H) là:\(\frac{x^{2}}{36} - \frac{y^{2}}{4} = 1.\)
c. (P) có tiêu điểm \(F(\frac{1}{2}; 0) \Rightarrow p = 1\)
Vậy parabol (P) có phương trình: \(y^{2} = 2x.\)
Bài 2 trang 70
Viết phương trình chính tắc của các đường conic dưới đây. Gọi tên là tìm tọa độ các tiêu điểm của chúng.
\(a. (C_{1}): 4x^{2} + 16y^{2} = 1;\)
\(b. (C_{2}): 16x^{2} - 4y^{2} = 144;\)
\(c. (C_{3}): x = \frac{1}{8}y^{2}\)
Gợi ý đáp án
a. Ta có: \(4x^{2} + 16y^{2} = 1 \Leftrightarrow \frac{x^{2}}{\frac{1}{4}} + \frac{y^{2}}{\frac{1}{16}} = 1\)
\(\Rightarrow a = \frac{1}{2}, b = \frac{1}{4} \Rightarrow c = \sqrt{a^{2} - b^{2}} = \sqrt{(\frac{1}{2})^{2} - (\frac{1}{4})^{2}} = \frac{\sqrt{3}}{4}\)
\(\Rightarrow\)Tọa độ các tiêu điểm của
\((C_{1})\) là
\(F_{1} = (-\frac{\sqrt{3}}{4}; 0); F_{2} = (\frac{\sqrt{3}}{4}; 0).\)
b. Ta có: \(16x^{2} - 4y^{2} = 144 \Leftrightarrow \frac{x^{2}}{9} - \frac{y^{2}}{36} = 1\)
\(\Rightarrow a = 3, b = 6 \Rightarrow c = \sqrt{a^{2} + b^{2}} = \sqrt{3^{2} + 6^{2}} = 3\sqrt{5}\)
\(\Rightarrow\) Tọa độ các tiêu điểm của
\((C_{2}) là F_{1} = (-3\sqrt{5}; 0); F_{2} = (3\sqrt{5}; 0).\)
c. Ta có: \(x = \frac{1}{8}y^{2} \Leftrightarrow y^{2} = 8x\)
\((C_{3})\) có dạng
\(y^{2} = 2px \Rightarrow p = 4\)
\(\Rightarrow\)Tọa độ tiêu điểm của
\((C_{3})\) là F = (2; 0)
Bài 3 trang 70
Để cắt một bảng quảng cáo hình elip có trục lớn là 80cm và trục nhỏ là 40 cm từ một tấm ván ép hình chữ nhật có kích thước 80cm x 40 cm, người ta vẽ hình elip đó lên tấm ván ép như hướng dẫn sau:
Chuẩn bị:
Hai cái đinh, một vòng dây kín không đàn hồi, bút chì.
Thực hiện:
Xác định vị trí (hai tiêu điểm của elip) và ghim hai cái đinh lên hai điểm đó trên tấm ván).
Quàng vòng dây qua hai chiếc đinh vào kéo căng tại một điểm M nào đó. Tựa đầu bút chì vào trong vòng dây tại điểm M rồi di chuyển sao cho dây luôn luôn căng. Đầu bút chì vạch lên tấm bìa một đường elip (Xem minh họa trong Hình 15).
Phải ghim hai cái đinh các mép tấm ván ép bao nhiêu xentimet và lấy vòng dây có độ dài là bao nhiêu?
Gợi ý đáp án
Ta có: \(2a = 80 cm, 2b = 40 cm \Rightarrow a = 40 cm, b = 20cm\)
\(\Rightarrow c = \sqrt{a^{2} - b^{2}} = \sqrt{40^{2} - 20^{2}} = 20\sqrt{3} (cm)\)
\(\Rightarrow\) Hai cái đinh cách mép chiều dài của tâm ván là 20cm, cách mép chiều rộng của tấm ván là
\(40 - 20\sqrt{3} \approx 5,36 cm.\)
Vòng dây có độ dài là \(2a + 2c = 2. 40 + 2. 20\sqrt{3} \approx 74,64 cm.\)
Bài 4 trang 71
Một nhà vòm chứa máy bay có mặt cắt hình nửa elip cao 8m, rộng 20m (Hình 16).
a. Chọn hệ tọa độ thích hợp và viết phương trình của elip nói trên.
b. Tính khoảng cách theo phương thẳng đứng từ một điểm cách chân tường 5m đến nóc nhà vòm.
Gợi ý đáp án
a. Chọn hệ tọa độ như hình vẽ:
Ta có: \(b = 8m, 2a = 20 m \Rightarrow a = 10 m\)
Vậy phương trình của elip (E) là: \(\frac{x^{2}}{100} + \frac{y^{2}}{64} = 1\)
b. Điểm A cách chân tường 5m nên A = (5; 0). Ta có độ dài AB chính là khoảng cách từ điểm A đến nóc nhà vòm.
Gọi \(B(5; y_{B}).\) Vì
\(B \in (E)\) nên thay tọa độ B vào phương trình (E), ta được:
\(\frac{5^{2}}{100} + \frac{y_{B}^{2}}{64} = 1\)
\(\Rightarrow y_{B} = 4\sqrt{3} \approx 6,9\)
Vậy AB = 6,9 m.
Bài 5 trang 71
Một tháp làm nguội của một nhà máy có mặt cắt là hình hypebol có phương trình là \(\frac{x^{2}}{28^{2}} - \frac{y^{2}}{42^{2}} = 1\)(Hình 17). Biết chiều cao của tháp là 150m và khoảng cách từ nóc tháp đến tấm đối xứng của hypebol bằng
\(\frac{2}{3}\) khoảng cách từ tâm đối xứng đến đáy. Tính bán kính nóc và bán kính đáy của tháp.
Gợi ý đáp án
Theo bài ra ta có: OA + OB = 150m, \(OA = \frac{2}{3} OB \Rightarrow OA = 60m, OB = 90m.\)
\(\Rightarrow A(0; 60), B(0; -90).\)
Thay y = 60 vào phương trình (H), ta được:\(\frac{x^{2}}{28^{2}} - \frac{60^{2}}{42^{2}} = 1 \Leftrightarrow x^{2} = 2384 \Leftrightarrow x = \pm 4\sqrt{149}\)
\(\Rightarrow\)Bán kính nóc bằng
\(4\sqrt{149} m\).
Thay y = -90 vào phương trình (H), ta được:
\(\frac{x^{2}}{28^{2}} - \frac{(-90)^{2}}{42^{2}} = 1 \Leftrightarrow x^{2} = 4384 \Leftrightarrow x = \pm 4\sqrt{274}\)
\(\Rightarrow\) Bán kính đáy bằng
\(4\sqrt{274} m.\)
Bài 6 trang 71
Một cái cầu có dây cáp treo hình parabol, cầu dài 100m và được nâng đỡ bởi những thanh thẳng đứng treo từ cáp xuống, thanh dài nhất là 30m, thanh ngắn nhất là 6 m (Hình 18). Tính chiều dài của thanh cách điểm giữa cầu 18m.
Gợi ý đáp án
Chọn hệ tọa độ như hình vẽ:
Theo bài ra ta có: AO = 6m, AD = 50 m, BD = 30m \(\Rightarrow\)điểm B có tọa độ B(24; 50).
Gọi phương trình của parabol (P) là \(y^{2} = 2px.\)
Vì \(B(24; 50) \in (P)\) nên thay tọa độ điểm B vào phương trình (P), ta được:
\(50^{2} = 2p. 24 \Rightarrow p = \frac{625}{12}\)
\(\Rightarrow\) Phương trình (P) là:
\(y^{2} = \frac{625}{6}x\)
Ta có: Độ dài đoạn ME chính là chiều dài của thanh cách điểm giữa cầu 18m. Gọi E = (m, 18), vì \(E\in(P)\) nên thay tọa độ E vào phương trình P, ta được:
\(18^{2} = \frac{625}{6}. m\)
\(\Rightarrow m = 3,1104\)
\(\Rightarrow ME = 6 + 3,1104 = 9,1104 (m)\)
Vậy thanh cáp cách điểm giữa cầu 18m có chiều dài là 9,1104m.
Link Download chính thức:
![👨](https://download.vn/Themes/Default/images/icon-comment.png)
Chủ đề liên quan
Có thể bạn quan tâm
-
Bài thơ Từ ấy - In trong tập Từ ấy, Tố Hữu
-
Nghị luận giữ gìn sự trong sáng của tiếng Việt
-
13 đề thi học kì 1 môn Toán lớp 1 năm học 2010 - 2011
-
Nghị luận xã hội về thực phẩm bẩn (2 Dàn ý + 10 mẫu)
-
Nghị luận xã hội về hiện tượng nói chuyện riêng trong giờ học
-
Văn mẫu lớp 7: Viết bài văn kể về một sự việc có thật liên quan đến nhân vật Trần Hưng Đạo
-
Công thức môn Tiếng Việt lớp 4, 5 - Tổng hợp kiến thức môn Tiếng Việt lớp 4, 5
-
Nghị luận xã hội về tệ nạn cờ bạc (2 Dàn ý + 15 Mẫu)
-
Nghị luận về câu Phải chăng sống ảo có nguy cơ đánh mất giá trị thực
-
Toán 6 Bài tập cuối chương 3 - Chân trời sáng tạo
Mới nhất trong tuần
-
Toán 10 Bài 1: Dấu của tam thức bậc hai
100+ -
Toán 10 Bài 1: Tọa độ của vectơ
1.000+ -
Toán 10 Bài 2: Hệ bất phương trình bậc nhất hai ẩn
5.000+ -
Toán 10 Bài 2: Định lí Côsin và định lí Sin
10.000+ 2 -
Toán 10 Bài 1: Bất phương trình bậc nhất hai ẩn
1.000+ -
Toán 10 Bài 3: Các phép toán trên tập hợp
5.000+ -
Toán 10 Bài 1: Giá trị lượng giác của một góc từ 0 đến 180
5.000+ -
Toán 10 Bài 2: Tập hợp
10.000+ -
Toán 10 Bài 1: Mệnh đề
10.000+ -
Toán 10 Bài 3: Đường tròn trong mặt phẳng tọa độ
1.000+