Toán 10 Bài 3: Các số đặc trưng đo xu thế trung tâm của mẫu số liệu Giải SGK Toán 10 trang 118 - Tập 1 sách Chân trời sáng tạo
Toán 10 Bài 3 Chân trời sáng tạo trang 118, 119 giúp các bạn học sinh có thêm nhiều gợi ý tham khảo để trả lời các câu hỏi phần Vận dụng và 7 bài tập trong SGK bài Các số đặc trưng đo xu thế trung tâm của mẫu số liệu thuộc chương 6 Thống kê.
Giải Toán 10 trang 118, 119 Chân trời sáng tạo tập 1 được biên soạn với các lời giải chi tiết, đầy đủ và chính xác bám sát chương trình sách giáo khoa. Giải Toán 10 Bài 3 Chân trời sáng tạo là tài liệu cực kì hữu ích hỗ trợ các em học sinh lớp 10 trong quá trình giải bài tập. Đồng thời phụ huynh có thể sử dụng để hướng dẫn con em học tập và đổi mới phương pháp giải phù hợp hơn.
Toán 10 Bài 3: Các số đặc trưng đo xu thế trung tâm của mẫu số liệu
Vận dụng Toán 10 Bài 3 trang 114
Vận dụng 1
Thời gian chạy 100 mét (đơn vị: giây) của các bạn học sinh ở hai nhóm A và B được ghi lại ở bảng:
Nhóm nào có thành tích chạy tốt hơn?
Hướng dẫn giải:
- Số giây trung bình nhóm A chạy được là: 1/8 (12,2 + 13,5 + 12,7 + 13,1 + 12,5 + 12,9 + 13,2 + 12,8) = 12,8625 (s)
- Số giây trung bình nhóm B chạy được là: 1/5 (12,1 + 13,4 + 13,2 + 12,9 + 13,7) = 13,06 (s)
=> Vậy nhóm A có thành tích chạy tốt hơn.
Vận dụng 2
Số bàn thắng mà một đội bóng ghi được ở mỗi trận đấu trong một mùa giải được thống kê lại ở bảng sau:
Hãy xác định số bàn thắng trung bình đội đó ghi được trong một trận đấu của mùa giải.
Hướng dẫn giải:
Bảng số liệu trên được cho dưới dạng bảng tần số.
Số trận đấu trong toàn mùa giải hay chính là cỡ mẫu là:
n = 5 + 10 + 5 + 3 + 2 + 1 = 26 (trận)
Số bàn thắng trung bình của đội đó ghi được trong một trận đấu của mùa giải là:
Giải Toán 10 trang 118, 119 Chân trời sáng tạo
Bài 1 trang 118
Hãy tìm số trung bình, tứ phân vị và mốt của các mẫu số liệu sau:
a) 23; 41; 71; 29; 48; 45; 72; 41.
b) 12; 32; 93; 78; 24; 12; 54; 66; 78.
Gợi ý đáp án:
a) 23; 41; 71; 29; 48; 45; 72; 41.
+) Số trung bình:\(\overline x = \frac{{23 + 41 + 71 + 29 + 48 + 45 + 72 + 41}}{8} = 46,25\)
+) Tứ phân vị:\({Q_1},{Q_2},{Q_3}\)
Bước 1: Sắp xếp mẫu số liệu theo thứ tự không giảm:\(23;{\rm{ }}29;{\rm{ }}41;{\rm{ }}41;\;{\rm{ }}45;{\rm{ }}48;\;71;72\)
Bước 2: n = 8, là số chẵn nên \({Q_2} = {M_e} = \frac{1}{2}(41 + 45) = 43\)
\({Q_1}\) là trung vị của nửa số liệu \(23;{\rm{ }}29;{\rm{ }}41;{\rm{ }}41. Do đó {Q_2} = \frac{1}{2}(29 + 41) = 35\)
\({Q_3}\) là trung vị của nửa số liệu \(45;{\rm{ }}48;\;71;72.\) Do đó \({Q_3} = \frac{1}{2}(48 + 71) = 59,5\)
+) Chỉ có giá trị 41 xuất hiện 2 lần, nhiều hơn các giá trị còn lại.
Do đó mốt \({M_o} = 41\)
b) 12; 32; 93; 78; 24; 12; 54; 66; 78.
+) Số trung bình:\(\overline x = \frac{{12 + 32 + 93 + 78 + 24 + 12 + 54 + 66 + 78}}{9} \approx 49,89\)
+) Tứ phân vị: \({Q_1},{Q_2},{Q_3}\)
Bước 1: Sắp xếp mẫu số liệu theo thứ tự không giảm: \(12;{\rm{ }}12;{\rm{ }}24;{\rm{ }}32;{\rm{ }}54;{\rm{ }}66;{\rm{ }}78;{\rm{ }}78;\;93\)
Bước 2: n = 9, là số lẻ nên\({Q_2} = {M_e} = 54\)
\({Q_1}\) là trung vị của nửa số liệu \(12;{\rm{ }}12;{\rm{ }}24;{\rm{ }}32. Do đó {Q_2} = \frac{1}{2}(12 + 24) = 18\)
\({Q_3}\) là trung vị của nửa số liệu \(66;{\rm{ }}78;{\rm{ }}78;\;93. Do đó {Q_3} = \frac{1}{2}(78 + 78) = 78\)
+) Giá trị 12 và giá trị 78 xuất hiện 2 lần, nhiều hơn các giá trị còn lại.
Do đó mốt \({M_o} = 12,{M_o} = 78.\)
Bài 2 trang 118
Hãy tìm số trung bình, tứ phân vị và mốt của các mẫu số liệu sau:
Lời giải:
a) Bảng số liệu là bảng tần số.
Cỡ mẫu là n = 6 + 8 + 10 + 6 + 4 + 3 = 37.
Số trung bình của mẫu là: \(\overline x = \frac{{23.6 + 25.8 + 28.10 + 31.6 + 33.4 + 37.3}}{{6 + 8 + 10 + 6 + 4 + 3}} \approx 28,3\)
Giá trị 28 có tần số lớn nhất nên mốt của mẫu là Mo = 28.
Sắp xếp mẫu số liệu theo thứ tự không giảm, ta được:
23; 23; 23; 23; 23; 23; 25; 25; 25; 25; 25; 25; 25; 25; 28; 28; 28; 28; 28; 28; 28; 28; 28; 28; 31; 31; 31; 31; 31; 31; 33; 33; 33; 33; 37; 37; 37.
Vì cỡ mẫu là số lẻ nên tứ phân vị thứ hai là Q2 = 28.
Tứ phân vị thứ nhất là trung vị của mẫu: 23; 23; 23; 23; 23; 23; 25; 25; 25; 25; 25; 25; 25; 25; 28; 28; 28; 28. Do đó Q1 = 25.
Tứ phân vị thứ ba là trung vị của mẫu: 28; 28; 28; 28; 28; 31; 31; 31; 31; 31; 31; 33; 33; 33; 33; 37; 37; 37. Do đó Q3 = 31.
b) Bảng số liệu là bảng tần số tương đối.
Số trung bình là:\(\overline x = \frac{{0.0,6 + 2.0,2 + 4.0,1 + 5.0,1}}{{0,6 + 0,2 + 0,1 + 0,1}} = 1,3\)
Tần số tương đối là tỉ số của tần số với cỡ mẫu, do đó, giá trị có tần số tương đối lớn nhất thì có tần số lớn nhất, vậy giá trị 0 có tần số lớn nhất nên mốt của mẫu số liệu là Mo = 0.
Giả sử cỡ mẫu là n = 10, khi đó:
Tần số của giá trị 0 là 0,6 . 10 = 6.
Tần số của giá trị 2 là 0,2 . 10 = 2.
Tần số của giá trị 4 là 0,1 . 10 = 1.
Tần số của giá trị 5 là 0,1 . 10 = 1.
Sắp xếp các số liệu theo thứ tự không giảm, ta được:
0; 0; 0; 0; 0; 0; 2; 2; 4; 5.
Vì cỡ mẫu là số chẵn nên tứ phân vị thứ hai là Q2 = 0.
Tứ phân vị thứ nhất là trung vị của mẫu: 0; 0; 0; 0; 0. Do đó Q1 = 0.
Tứ phân vị thứ ba là trung vị của mẫu: 0; 2; 2; 4; 5. Do đó Q3 = 2.
Bài 3 trang 118
An lấy ra ngẫu nhiên 3 quả bóng từ một hộp có chứa nhiều bóng xanh và bóng đỏ. An đếm xem có bao nhiêu bóng đỏ trong 3 bóng lấy ra rồi trả bóng lại hộp. An lặp lại phép thử trên 100 lần và ghi lại kết quả ở bảng sau:
Số bóng đỏ | 0 | 1 | 2 | 3 |
Số lần | 10 | 30 | 40 | 20 |
Hãy tìm số trung bình, tứ phân vị và mốt của bảng kết quả trên.
Gợi ý đáp án
+) Số trung bình: \(\overline x = \frac{{0.10 + 1.30 + 2.40 + 3.20}}{{100}} = 1,7\)
+) Tứ phân vị:\({Q_1},{Q_2},{Q_3}\)
Bước 1: Sắp xếp mẫu số liệu theo thứ tự không giảm,\(\underbrace {0,...,0}_{10},\underbrace {1,...,1}_{30},\underbrace {2,...,2}_{40},\underbrace {3,...,3}_{20}.\)
Bước 2: Vì n = 100, là số chẵn nên \({Q_2} = \frac{1}{2}(2 + 2) = 2\)
\({Q_1}\)là trung vị của nửa số liệu: \(\underbrace {0,...,0}_{10},\underbrace {1,...,1}_{30},\underbrace {2,...,2}_{10}. Do đó {Q_1} = \frac{1}{2}(1 + 1) = 1\)
\({Q_3}\) là trung vị của nửa số liệu \(\underbrace {2,...,2}_{30},\underbrace {3,...,3}_{20}. Do đó {Q_3} = \frac{1}{2}(2 + 2) = 2\)
+) Mốt \({M_o} = 2\)
Bài 4 trang 118
Trong một cuộc thi nghề, người ta ghi lại thời gian hoàn thành một sản phẩm của một số thí nghiệm ở bảng sau:
Thời gian (đơn vị: phút) | 5 | 6 | 7 | 8 | 35 |
Số thí sinh | 1 | 3 | 5 | 2 | 1 |
a) Hãy tìm số trung bình, tứ phân vị và mốt của thời gian thi nghề của các thí sinh trên.
b) Năm ngoái, thời gian thi của các thí sinh có số trung bình và trung vị đều bằng 7. Bạn hãy so sánh thời gian thi nói chung của các thí sinh trong hai năm.
Gợi ý đáp án:
a.
+) Số trung bình:\(\overline x = \frac{{1.5 + 3.6 + 5.7 + 2.8 + 1.35}}{{1 + 3 + 5 + 2 + 1}} = 9,08\)
+) Tứ phân vị :\({Q_1},{Q_2},{Q_3}\)
Bước 1: Sắp xếp mẫu số liệu theo thứ tự không giảm, 5,6,6,6,7,7,7,7,7,8,8,35
Bước 2: Vì n = 12, là số chẵn nên \({Q_2} = \frac{1}{2}(7 + 7) = 7\)
\({Q_1}\) là trung vị của nửa số liệu: 5,6,6,6,7,7 Do đó \({Q_1} = \frac{1}{2}(6 + 6) = 6\)
\({Q_3}\) là trung vị của nửa số liệu 7,7,7,8,8,35 Do đó \({Q_3} = \frac{1}{2}(7 + 8) = 7,5\)
+) Mốt \({M_o} = 7\)
b.
+) Nếu so sánh số trung bình: 9,08 > 7 do đó thời gian thi nói chung của các thí sinh trong năm nay là lớn hơn so với năm trước.
+) Nếu so sánh trung vị: Trung vị của hai năm đều bằng 7 do đó thời gian thi nói chung của các thí sinh trong hai năm là như nhau.
Do có 1 thí sinh có thời gian thi lớn hơn hẳn so với các thí sinh khác => nên so sánh theo trung vị.
Bài 5 trang 118
Bác Dũng và bác Thu ghi lại só điện thoại mà mỗi người gọi mỗi ngày trong 10 ngày được lựa chọn ngẫu nhiên từ tháng 01/2021 ở bảng sau:
Bác Dũng | 2 | 7 | 3 | 6 | 1 | 4 | 1 | 4 | 5 | 1 |
Bác Thu | 1 | 3 | 1 | 2 | 3 | 4 | 1 | 2 | 20 | 2 |
a) Hãy tìm số trung bình, tứ phân vị và mốt của số điện thoại mà mỗi bác gọi theo số liệu trên
b) Nếu so sánh theo số trung bình thì ai có nhiều cuộc điện thoại hơn?
c) Nếu so sánh theo số trung vị thì ai có nhiều cuộc điện thoại hơn?
d) Theo bạn, nên dùng số trung bình hay số trung vị để so sánh xem ai có nhiều cuộc gọi điện thoại hơn mỗi ngày?
Gợi ý đáp án
a) Bác Dũng:
+) Số trung bình: \(\overline x = \frac{{2 + 7 + 3 + 6 + 1 + 4 + 1 + 4 + 5 + 1}}{{10}} = 3,4\)
+) Tứ phân vị:\({Q_1},{Q_2},{Q_3}\)
Bước 1: Sắp xếp mẫu số liệu theo thứ tự không giảm, 1,1,1,2,3,4,4,5,6,7
Bước 2: Vì n = 10, là số chẵn nên \({Q_2} = \frac{1}{2}(3 + 4) = 3,5\)
\({Q_1}\) là trung vị của nửa số liệu: 1,1,1,2,3 Do đó \({Q_1} = 1\)
\({Q_3}\) là trung vị của nửa số liệu 4,4,5,6,7 Do đó \({Q_3} = 5\)
+) Mốt \({M_o} = 1\)
Bác Thu
+) Số trung bình: \(\overline x = \frac{{1 + 3 + 1 + 2 + 3 + 4 + 1 + 2 + 20 + 2}}{{10}} = 3,9\)
+) Tứ phân vị: \({Q_1},{Q_2},{Q_3}\)
Bước 1: Sắp xếp mẫu số liệu theo thứ tự không giảm, 1,1,1,2,2,2,3,3,4,20
Bước 2: Vì n = 10, là số chẵn nên \({Q_2} = \frac{1}{2}(2 + 2) = 2\)
\({Q_1}\) là trung vị của nửa số liệu: 1,1,1,2,2 Do đó \({Q_1} = 1\)
\({Q_3}\) là trung vị của nửa số liệu 2,3,3,4,20 Do đó \({Q_3} = 3\)
+) Mốt \({M_o} = 1,{M_o} = 2\)
b) Do 3,9 > 3,4 nên theo số trung bình thì bác Thu có nhiều cuộc điện thoại hơn.
c) Do 3,5 > 2 nên theo số trung vị thì bác Dũng có nhiều cuộc điện thoại hơn.
d) Vì trong mẫu số liệu có một ngày bác Thu có tới 20 cuộc điện thoại, lớn hơn nhiều so với các ngày khác, do đó ta nên so sánh theo số trung vị.
Bài 6 trang 119
Tổng số điểm mà các thành viên đội tuyển Olympic Toán quốc tế (IMO) của Việt Nam đặt được trong 20 kì thi được cho ở bảng sau:
Năm | Tổng điểm | Năm | Tổng điểm | Năm | Tổng điểm | Năm | Tổng điểm |
2020 | 150 | 2015 | 151 | 2010 | 133 | 2005 | 143 |
2019 | 177 | 2014 | 157 | 2009 | 161 | 2004 | 196 |
2018 | 148 | 2013 | 180 | 2008 | 159 | 2003 | 172 |
2017 | 155 | 2012 | 148 | 2007 | 168 | 2002 | 166 |
2016 | 151 | 2011 | 113 | 2006 | 131 | 2001 | 139 |
(Nguồn: https://imo-offial.org)
Có ý kiến cho rằng điểm thi của đội tuyển giai đoạn 2001 – 2010 cao hơn giai đoạn 2011 – 2020. Hãy sử dụng số trung bình và trung vị để kiểm nghiệm xem ý kiến trên có đúng không.
Gợi ý đáp án
+) Giai đoạn 2001 – 2010
Số trung bình \(\overline x = \frac{{139 + 166 + 172 + 196 + 143 + 131 + 168 + 159 + 161 + 133}}{{10}} = 156,8\)
Sắp sếp số liệu theo thứ tự không giảm, ta được: 131,133,139,143,159,161,166,168,172,196
Do n = 10, là số chẵn nên trung vị là: \({M_e} = \frac{1}{2}(159 + 161) = 160\)
+) Giai đoạn 2011 – 2020
Số trung bình \(\overline x = \frac{{150 + 177 + 148 + 155 + 151 + 151 + 157 + 180 + 148 + 113}}{{10}} = 153\)
Sắp sếp số liệu theo thứ tự không giảm, ta được:
\(113,\;148,\;148,\;150,\;151,\;151,\;155,\;157,\;177,\;180\)
Do n = 10, là số chẵn nên trung vị là: \({M_e} = \frac{1}{2}(151 + 151) = 151\)
+) So sánh theo số trung bình hay số trung vị ta đều thấy điểm thi của đổi tuyển giai đoạn 2001 – 2010 cao hơn giai đoạn 2011 – 2020.
Vậy ý kiến trên là đúng.
Bài 7 trang 119
Kết quả bài kiểm tra giữa kì cả các bạn học sinh lớp 10A, 10B, 10C được thống kê ở các biểu đồ dưới đây.
a) Hãy lập thống kê số lượng học sinh theo điểm số ở mỗi lớp.
b) Hãy so sánh điểm số của học sinh các lớp đó theo số trung bình, trung vị và mốt.
Gợi ý đáp án
a)
Lớp 10A | Điểm | 5 | 6 | 7 | 8 | 9 | 10 |
Số HS | 1 | 4 | 5 | 8 | 14 | 8 | |
Lớp 10B | Điểm | 5 | 6 | 7 | 8 | 9 | 10 |
Số HS | 4 | 6 | 10 | 10 | 6 | 4 | |
Lớp 10C | Điểm | 5 | 6 | 7 | 8 | 9 | 10 |
Số HS | 1 | 3 | 17 | 11 | 6 | 2 |
b)
+) Lớp 10A
Số trung bình \(\overline x = \frac{{5.1 + 6.4 + 7.5 + 8.8 + 9.14 + 10.8}}{{1 + 4 + 5 + 8 + 14 + 8}} = 8,35\)
Sắp sếp số liệu theo thứ tự không giảm, ta được: 5,6,6,6,6,7,7,7,7,7,\(\underbrace {8,...,8}_8,\underbrace {9,...,9}_{14},\underbrace {10,...,10}_8\)
Do n = 40, là số chẵn nên trung vị là: \({M_e} = \frac{1}{2}(9 + 9) = 9\)
Mốt \({M_e} = 9\)
+) Lớp 10B
Số trung bình \(\overline x = \frac{{5.4 + 6.6 + 7.10 + 8.10 + 9.6 + 10.4}}{{4 + 6 + 10 + 10 + 6 + 4}} = 7,5\)
Sắp sếp số liệu theo thứ tự không giảm, ta được: \(5,5,5,5,\underbrace {6,..,6}_6,\underbrace {7,...,7}_{10},\underbrace {8,...,8}_{10},\underbrace {9,...,9}_6,10,10,10,10\)
Do n = 40, là số chẵn nên trung vị là: \({M_e} = \frac{1}{2}(7 + 8) = 7,5\)
Mốt \({M_e} = 7;{M_e} = 8.\)
+) Lớp 10C
Số trung bình \(\overline x = \frac{{5.1 + 6.3 + 7.17 + 8.11 + 9.6 + 10.2}}{{1 + 3 + 17 + 11 + 6 + 2}} = 7,6\)
Sắp sếp số liệu theo thứ tự không giảm, ta được: \(5,6,6,6,\underbrace {7,...,7}_{17},\underbrace {8,...,8}_{11},\underbrace {9,...,9}_6,10,10\)
Do n = 40, là số chẵn nên trung vị là: \({M_e} = \frac{1}{2}(7 + 7) = 7\)
Mốt \({M_e} = 7\)
+) So sánh:
Số trung bình: 8,35 > 7,6 > 7,5 => Điểm số của HS các lớp theo thứ tự giảm dần là 10A, 10C, 10B.
Số trung vị: 9 > 7,5 > 7=> Điểm số của HS các lớp theo thứ tự giảm dần là 10A, 10B, 10C.
Mốt: Lớp 10A có 14 điểm 9, Lớp 10B có 10 điểm 7 và 10 điểm 8, Lớp 10C có 17 điểm 7. Do đó so sánh theo mốt thì điểm số các lớp giảm dàn theo thứ tự là: 10A, 10B, 10C
Link Download chính thức:
Chủ đề liên quan
Có thể bạn quan tâm
-
Cách thay thế từ/cụm từ trong bài nghị luận văn học
-
Tập làm văn lớp 5: Tả cảnh buổi sáng trên cánh đồng
-
Tổng hợp dàn ý bài Câu cá mùa thu (9 Mẫu)
-
Soạn bài Tục ngữ về thiên nhiên, lao động và con người, xã hội (2) - Cánh diều 7
-
Cảm nhận về bài thơ Câu cá mùa thu của Nguyễn Khuyến
-
Mẫu vở tập tô chữ cho bé - Tập tô chữ cái cho bé chuẩn bị vào lớp 1
-
Phân tích bài thơ Câu cá mùa thu của Nguyễn Khuyến (3 Dàn ý + 19 mẫu)
-
Văn mẫu lớp 9: Nghị luận về vai trò của lao động đối với con người
-
Văn mẫu lớp 10: Dàn ý phân tích bài thơ Nắng mới (5 mẫu)
-
Văn mẫu lớp 10: Cảm nhận bài thơ Nắng mới (Dàn ý + 6 Mẫu)
Mới nhất trong tuần
-
Toán 10 Bài 2: Hệ bất phương trình bậc nhất hai ẩn
5.000+ -
Toán 10 Bài 2: Định lí Côsin và định lí Sin
10.000+ 2 -
Toán 10 Bài 1: Bất phương trình bậc nhất hai ẩn
1.000+ -
Toán 10 Bài 3: Các phép toán trên tập hợp
5.000+ -
Toán 10 Bài 1: Giá trị lượng giác của một góc từ 0 đến 180
5.000+ -
Toán 10 Bài 2: Tập hợp
10.000+ -
Toán 10 Bài 1: Mệnh đề
10.000+ -
Toán 10 Bài 3: Đường tròn trong mặt phẳng tọa độ
1.000+ -
Toán 10 Bài 2: Hoán vị, chỉnh hợp và tổ hợp
1.000+ -
Toán 10 Bài 1: Quy tắc cộng và quy tắc nhân
1.000+