Toán 11 Bài 1: Dãy số Giải Toán 11 Cánh diều trang 43, 44, 45, 46, 47, 48

Toán lớp 11 tập 1 trang 43, 44, 45, 46, 47, 48 Cánh diều là tài liệu vô cùng hữu ích mà Eballsviet.com muốn giới thiệu đến quý thầy cô cùng các bạn học sinh lớp 11 tham khảo.

Giải Toán 11 Cánh diều Bài 1 Dãy số được biên soạn đầy đủ, chi tiết trả lời các câu hỏi phần bài tập cuối bài trang 47, 48. Qua đó giúp các bạn học sinh có thể so sánh với kết quả mình đã làm. Vậy sau đây là nội dung chi tiết Toán 11 tập 1 Bài 1 Dãy số Cánh diều, mời các bạn cùng theo dõi tại đây.

Toán lớp 11 tập 1 trang 47, 48 - Cánh diều

Bài 1 trang 47

Viết năm số hạng đầu của mỗi dãy số có số hạng tổng quát u_{n}\(u_{n}\) cho bởi công thức sau:

a) u_{n}=2n^{2}+1\(u_{n}=2n^{2}+1\);

b) u_{n}=\frac{(-1)^{n}}{2n-1}\(u_{n}=\frac{(-1)^{n}}{2n-1}\);

c) u_{n}=\frac{2^{n}}{n}\(u_{n}=\frac{2^{n}}{n}\);

d) u_{n}=(1+\frac{1}{n})^{n}\(u_{n}=(1+\frac{1}{n})^{n}\).

Gợi ý đáp án

a) 3, 9, 19, 33, 51\(3, 9, 19, 33, 51\);

b) -1; \frac{1}{3}; -\frac{1}{5}; \frac{1}{7}; -\frac{1}{9}\(-1; \frac{1}{3}; -\frac{1}{5}; \frac{1}{7}; -\frac{1}{9}\);

c) 2;2;\frac{8}{3}; 4; \frac{32}{5}\(2;2;\frac{8}{3}; 4; \frac{32}{5}\);

d) 2;\frac{9}{4}; \frac{64}{27}; \frac{625}{256}; (\frac{6}{5})^{5}\(2;\frac{9}{4}; \frac{64}{27}; \frac{625}{256}; (\frac{6}{5})^{5}\).

Bài 2 trang 47

a) Gọi u_{n}\(u_{n}\) là số chấm ở hàng thứ n\(n\) trong Hình 1. Dự đoán công thức của số hạng tổng quát cho dãy số (u_{n})\((u_{n})\).

b) Gọi v_{n}\(v_{n}\) là tổng diện tích của các hình tô màu ở hàng thứ n\(n\) trong Hình 2 (mỗi ô vuông nhỏ là một đơn vị diện tích). Dự đoán công thức của số hạng tổng quát cho dãy số (v_{n})\((v_{n})\).

Gợi ý đáp án

a) Số hạng tổng quát u_{n}=n\(u_{n}=n\).

b) Ta có: v_{1}=1^{3}\(v_{1}=1^{3}\), v_{2}=2^{3}\(v_{2}=2^{3}\), v_{3}=3^{3}\(v_{3}=3^{3}\), v_{4}=4^{3}\(v_{4}=4^{3}\) ...

Do đó: Số hạng tổng quát v_{n}=n^{3}\(v_{n}=n^{3}\).

Bài 3 trang 48

Xét tính tăng, giảm của mỗi dãy số (u_{n}\(u_{n}\)), biết:

a) u_{n}=\frac{n-3}{n+2}\(u_{n}=\frac{n-3}{n+2}\);

b) u_{n}=\frac{3^{n}}{2^{n}.n!}\(u_{n}=\frac{3^{n}}{2^{n}.n!}\);

c) u_{n}=(-1)^{n}.(2^{n}+1)\(u_{n}=(-1)^{n}.(2^{n}+1)\).

Gợi ý đáp án

a) Ta có: u_{n+1}=\frac{n-2}{n+3}\(u_{n+1}=\frac{n-2}{n+3}\) với mọi n\in \mathbb{N}^{*}\(n\in \mathbb{N}^{*}\).

Có: u_{n+1}-u_{n}= \frac{5}{n^{2}+5n+6}> 0\(u_{n+1}-u_{n}= \frac{5}{n^{2}+5n+6}> 0\), n\in \mathbb{N}^{*}\(n\in \mathbb{N}^{*}\).

Vậy dãy số u_{n}\(u_{n}\) là dãy số tăng.

b) Ta có: u_{n+1}-u_{n}< 0\(u_{n+1}-u_{n}< 0\), với mọi n\in \mathbb{N}^{*}\(n\in \mathbb{N}^{*}\).

Vậy dãy số u_{n}\(u_{n}\) là dãy số giảm.

c) Ta thử số n = 1; 2; 3; ... được dãy số u_{n}= -3; 5; -9; 17\(u_{n}= -3; 5; -9; 17\); ...

Vậy dãy số u_{n}\(u_{n}\) là dãy số không tăng không giảm.

Bài 4 trang 48

Trong các dãy số (u_{n}\(u_{n}\)) được xác định như sau, dãy số nào bị chặn dưới, bị chặn trên, bị chặn?

a) u_{n}= n^{2}+2\(u_{n}= n^{2}+2\);

b) u_{n}=-2n+1\(u_{n}=-2n+1\);

c) u_{n}=\frac{1}{n^{2}+n}\(u_{n}=\frac{1}{n^{2}+n}\).

Gợi ý đáp án

a) Vì n^{2}+2\geq 3\(n^{2}+2\geq 3\) nên dãy số u_{n}\(u_{n}\) là dãy số bị chặn dưới;

b) Vì -2n+1\leq -1\(-2n+1\leq -1\) nên dãy số u_{n}\(u_{n}\) là dãy số bị chặn trên;

c) Vì 0< \frac{1}{n^{2}+n}\leq \frac{1}{2}\(0< \frac{1}{n^{2}+n}\leq \frac{1}{2}\) nên dãy số u_{n}\(u_{n}\) là dãy số bị chặn.

Bài 5 trang 48

Cho dãy số thực dương (u_{n}\(u_{n}\)). Chứng minh rằng dãy số (u_{n}\(u_{n}\)) là dãy số tăng khi và chỉ khi \frac{u_{n}+1}{u_{n}}> 1\(\frac{u_{n}+1}{u_{n}}> 1\) với mọi n\in \mathbb{N}^{*}\(n\in \mathbb{N}^{*}\).

Gợi ý đáp án

u_{n}> 0\(u_{n}> 0\) nên nhân u_{n}\(u_{n}\) vào hai vế của bất đẳng thức \frac{u_{n}+1}{u_{n}}> 1\(\frac{u_{n}+1}{u_{n}}> 1\), ta có: u_{n+1}> u_{n}\(u_{n+1}> u_{n}\) với mọi n\in \mathbb{N}^{*}\(n\in \mathbb{N}^{*}\).

Suy ra: Dãy số (u_{n}\(u_{n}\)) là dãy số tăng khi và chỉ khi \frac{u_{n}+1}{u_{n}}> 1\(\frac{u_{n}+1}{u_{n}}> 1\) với mọi n\in \mathbb{N}^{*}\(n\in \mathbb{N}^{*}\).

Bài 6 trang 48

Chị Mai gửi tiền tiết kiệm vào ngân hàng theo thể thức lãi kép như sau: Lần đầu chị gửi 100 triệu đồng. Sau đó, cứ hết 1 tháng chị lại gửi thêm vào ngân hàng 6 triệu đồng. Biết lãi suất của ngân hàng là 0,5% một tháng. Gọi P_{n}\(P_{n}\) (triệu đồng) là số tiền chị có trong ngân hàng sau n\(n\) tháng.

a) Tính số tiền chị có trong ngân hàng sau 1 tháng.

b) Tính số tiền chị có trong ngân hàng sau 3 tháng.

c) Dự đoán công thức của P_{n}\(P_{n}\) tính theo n\(n\).

Gợi ý đáp án

a) Sau 1 tháng, chị Mai có: 100(1+0,005)\(100(1+0,005)\) (triệu đồng)

b) Sau 3 tháng, chị Mai có: 100(1+0,005)^{3}+6(1+0,005)^{2}\(100(1+0,005)^{3}+6(1+0,005)^{2}\) (triệu đồng)

c) Dự đoán công thức: P_{n}=100(1+0,005)^{n}+6(1+0,005)^{n-1}\(P_{n}=100(1+0,005)^{n}+6(1+0,005)^{n-1}\) (triệu đồng).

Chia sẻ bởi: 👨 Trịnh Thị Thanh
Sắp xếp theo
👨
    Chỉ thành viên Download Pro tải được nội dung này! Download Pro - Tải nhanh, website không quảng cáo! Tìm hiểu thêm