Toán 9 Bài 16: Vị trí tương đối của đường thẳng và đường tròn Giải Toán 9 Kết nối tri thức tập 1 trang 99, 100, 101, 102, 103
Giải Toán 9 Bài 16: Vị trí tương đối của đường thẳng và đường tròn là tài liệu vô cùng hữu ích giúp các em học sinh lớp 9 có thêm nhiều gợi ý tham khảo để giải các bài tập trong SGK Toán 9 Kết nối tri thức với cuộc sống tập 1 trang 99, 100, 101, 102, 103.
Giải bài tập Toán 9 Kết nối tri thức tập 1 trang 99 → 103 được trình bày rõ ràng, cẩn thận, dễ hiểu nhằm giúp học sinh nhanh chóng biết cách làm bài. Đồng thời, cũng là tài liệu hữu ích giúp giáo viên thuận tiện trong việc hướng dẫn học sinh ôn tập Bài 16 Chương V: Đường tròn. Mời thầy cô và các em theo dõi bài viết dưới đây của Eballsviet.com:
Toán 9 Bài 16: Vị trí tương đối của đường thẳng và đường tròn Kết nối tri thức
Giải Toán 9 Kết nối tri thức Tập 1 trang 103
Bài 5.20
Bạn Thanh cắt 4 hình tròn bằng giấy có bán kính lần lượt là 4 cm, 6 cm, 7 cm và 8 cm để dán trang trí trên một mảnh giấy, trên đó có vẽ trước hai đường thẳng a và b. Biết rằng a và b là hai đường thẳng song song với nhau và cách nhau một khoảng 6 cm (nghĩa là mọi điểm trên đường thẳng b đều cách a một khoảng 6 cm). Hỏi nếu bạn Thanh dán sao cho tâm của cả 4 hình tròn đều nằm trên đường thẳng b thì hình nào đè lên đường thẳng a, hình nào không đè lên đường thẳng a?
Lời giải:
• Vì a và b là hai đường thẳng song song với nhau và cách nhau một khoảng 6 cm nên đường thẳng a tiếp xúc với hình tròn bán kính 6 cm, hay hình tròn bán kính 6 cm đè lên đường thẳng a.
• Vì 4 cm < 6 cm nên đường thẳng a và hình tròn bán kính 4 cm không cắt nhau, hay hình tròn bán kính 4 cm không đè lên trường thẳng a.
• Vì 7 cm > 6 cm; 8 cm > 6 cm nên đường thẳng a và hình tròn bán kính 4 cm cắt nhau, hay hình tròn bán kính 7 cm và 8 cm đè lên đường thẳng a.
Vậy hình tròn bán kính 4 cm không đè lên trường thẳng a, hình tròn bán kính 6 cm, 7 cm và 8 cm đè lên đường thẳng a.
Bài 5.21
Cho đường tròn (O) đi qua ba đỉnh A, B và C của một tam giác cân tại A, Chứng minh rằng đường thẳng đi qua A và song song với BC là một tiếp tuyến của (O).
Lời giải:
Ta có đường thẳng AO là trục đối xứng của đường tròn.
Nên B là điểm đối xứng của C qua AO.
Gọi H là giao điểm của AO và BC.
Khi đó ta có: AH ⊥ BC mà d // BC nên AH ⊥ d.
Vậy d là một tiếp tuyến của đường tròn.
Bài 5.22
Cho góc xOy với đường phân giác Ot và điểm A trên cạnh Ox, điểm B trên cạnh Oy sao cho OA = OB. Đường thẳng qua A và vuông góc với Ox cắt Ot tại M. Chứng minh rằng OA và OB là hai tiếp tuyến cắt nhau của đường tròn (M; MA).
Lời giải:
Xét ΔOAM và ΔOBM có:
OM chung
AOM^=BOM^ (do OM là tia phân giác của góc AOB^ )
OA = OB
Do đó ΔOAM = ΔOBM (c.g.c).
Suy ra AM = BM (hai cạnh tương ứng).
Và OAM^=OBM^=90° (hai góc tương ứng) hay OB ⊥ MB.
Do đó OA là tiếp tuyến của đường tròn (M; MA).
Vậy OA và OB là hai tiếp tuyến cắt nhau của (O).
Bài 5.23
Cho SA và SB là hai tiếp tuyến cắt nhau của đường tròn (O) (A và B là hai tiếp điểm). Gọi M là một điểm tùy ý trên cung nhỏ AB. Tiếp tuyến của (O) tại M cắt SA tại E và cắt SB tại F.
a) Chứng minh rằng chu vi của tam giác SEF bằng SA + SB.
b) Giả sử M là giao điểm của đoạn SO với đường tròn (O). Chứng minh rằng SE = SF.