So sánh biểu thức với một số Ôn tập Toán 9
So sánh biểu thức với một số là một trong những kiến thức trọng tâm trong chương trình Toán 9.
So sánh giá trị biểu thức với một số hoặc biểu thức bao gồm cách so sánh, phương pháp kèm theo một số ví dụ minh họa. Thông qua tài liệu này sẽ giúp cho các em ôn tập kiến thức một cách hiệu quả, định hướng đúng trong quá trình ôn tập và giúp các em tiết kiệm tối đa thời gian học tập. Đặc biệt là biết cách so sánh biểu thức với một số. Ngoài ra các bạn tham khảo thêm rất nhiều tài liệu hay khác tại chuyên mục Toán 9.
So sánh giá trị biểu thức với một số hoặc một biểu thức khác
I. Cách so sánh biểu thức chứa căn với một số
+) So sánh biểu thức A với một số m
- Xét hiệu A – m
- Dùng các điều kiện của biến x, Các bất đẳng thức, hằng đẳng thức để đánh giá hiệu A – m
- Nếu A – m > 0 thì A > m
- Nếu A – m < 0 thì A < m
+) So sánh biểu thức A với một biểu thức khác
- So sánh biểu thức A với A
- Nếu 0 < A < 1 thì A < A
- Nếu A > 1 thì A > A
- So sánh biểu thức A với A
- Vì A≤A với mọi A
- Nếu A≥0 thì A=A
- Nếu A < 0 thì A < |A|
+) Tìm x để A > m (A < m, A m, A m).
- Xét A > m
- Quy đồng mẫu (chú ý không được khử mẫu)
- Xét dấu tử số và mẫu số, tìm được x
- So sánh với điều kiện đầu bài rồi kết luận.
II. Phương pháp so sánh biểu thức chứa căn với một số
- Để so sánh hai biểu thức A đã rút gọn với một số k, ta xét hiệu: A – k
+ Nếu A – k > 0 thì A > k
+ Nếu A – k < 0 thì A < k
III. Ví dụ so sánh biểu thức chứa căn với một số
Ví dụ 1: Cho biểu thức : \(P = \dfrac{{2x + 2}}{{\sqrt x }} + \dfrac{{x\sqrt x - 1}}{{x - \sqrt x }} - \dfrac{{x\sqrt x + 1}}{{x + \sqrt x }}\)
a) Rút gọn biểu thức P
b) So sánh P với 5
Gợi ý đáp án
a)
\(\begin{array}{l} P = \dfrac{{2x + 2}}{{\sqrt x }} + \dfrac{{x\sqrt x - 1}}{{x - \sqrt x }} - \dfrac{{x\sqrt x + 1}}{{x + \sqrt x }}\\ P = \dfrac{{2x + 2}}{{\sqrt x }} + \dfrac{{\left( {\sqrt x - 1} \right)\left( {x + \sqrt x + 1} \right)}}{{\sqrt x \left( {\sqrt x - 1} \right)}} - \dfrac{{\left( {\sqrt x + 1} \right)\left( {x - \sqrt x + 1} \right)}}{{\sqrt x \left( {\sqrt x + 1} \right)}}\\ P = \dfrac{{2x + 2}}{{\sqrt x }} + \dfrac{{\left( {x + \sqrt x + 1} \right)}}{{\sqrt x }} - \dfrac{{\left( {x - \sqrt x + 1} \right)}}{{\sqrt x }}\\ P = \dfrac{{2x + 2 + x + \sqrt x + 1 - x + \sqrt x - 1}}{{\sqrt x }} = \dfrac{{2x + 2 + 2\sqrt x }}{{\sqrt x }} \end{array}\)
b) Xét hiệu \(P - 5 = \dfrac{{2x + 2 + 2\sqrt x }}{{\sqrt x }} - 5 = \dfrac{{2x + 2 + 2\sqrt x - 5\sqrt x }}{{\sqrt x }} = \dfrac{{2x + 2 - 3\sqrt x }}{{\sqrt x }}\)
Ta có:
\(\begin{array}{l} 2x - 3\sqrt x + 1 = 2\left( {x - \dfrac{3}{2}\sqrt x + 1} \right)\\ = 2\left( {x - 2.\dfrac{3}{4}\sqrt x + {{\left( {\dfrac{3}{4}} \right)}^2} + \dfrac{7}{{16}}} \right) = 2\left[ {{{\left( {\sqrt x - \dfrac{3}{4}} \right)}^2} + \dfrac{7}{{16}}} \right] \end{array}\)
\(\begin{array}{l} {\left( {\sqrt x - \dfrac{3}{4}} \right)^2} \ge 0\\ \Rightarrow {\left( {\sqrt x - \dfrac{3}{4}} \right)^2} + \dfrac{7}{{16}} \ge \dfrac{7}{{16}}\\ 2\left[ {{{\left( {\sqrt x - \dfrac{3}{4}} \right)}^2} + \dfrac{7}{{16}}} \right] \ge \dfrac{7}{8} > 0 \end{array}\)
Lại có \(\sqrt x > 0\) nên
\(\dfrac{{2x + 2 - 3\sqrt x }}{{\sqrt x }} > 0 \Rightarrow P - 5 > 0 \Rightarrow P > 5\)
Ví dụ 2: Cho biểu thức \(M = \left( {\dfrac{1}{{x - \sqrt x }} + \dfrac{1}{{\sqrt x - 1}}} \right):\dfrac{{\sqrt x + 1}}{{x - 2\sqrt x + 1}}\) với
\(x > 0;\,\,x \ne 1\)
a) Rút gọn biểu thức
b) So sánh M với 1
Gợi ý đáp án
\(\begin{array}{l} M = \left( {\dfrac{1}{{x - \sqrt x }} + \dfrac{1}{{\sqrt x - 1}}} \right):\dfrac{{\sqrt x + 1}}{{x - 2\sqrt x + 1}}\\ M = \left( {\dfrac{1}{{\sqrt x .\left( {\sqrt x - 1} \right)}} + \dfrac{{\sqrt x }}{{\sqrt x .\left( {\sqrt x - 1} \right)}}} \right):\dfrac{{\sqrt x + 1}}{{{{\left( {\sqrt x - 1} \right)}^2}}}\\ M = \dfrac{{\sqrt x + 1}}{{\sqrt x .\left( {\sqrt x - 1} \right)}}:\dfrac{{\sqrt x + 1}}{{{{\left( {\sqrt x - 1} \right)}^2}}} = \dfrac{{\sqrt x + 1}}{{\sqrt x .\left( {\sqrt x - 1} \right)}}.\dfrac{{{{\left( {\sqrt x - 1} \right)}^2}}}{{\sqrt x + 1}} = \dfrac{{\sqrt x - 1}}{{\sqrt x }} \end{array}\)
b) Xét hiệu \(M - 1 = \dfrac{{\sqrt x - 1}}{{\sqrt x }} - 1 = \dfrac{{\sqrt x - 1 - \sqrt x }}{{\sqrt x }} = \dfrac{{ - 1}}{{\sqrt x }}\)
Ta có: \(\left\{ \begin{array}{l} - 1 < 0\\ \sqrt x > 0 \end{array} \right. \Rightarrow \dfrac{{ - 1}}{{\sqrt x }} < 0 \Rightarrow M - 1 < 0 \Rightarrow M < 1\)
Ví dụ 3
So sánh các số sau:
a) 9 và √80
b) √15 - 1 và √10
Gợi ý đáp án
a) Ta có: 9 = √81. Vì √81 > √80 nên 9 > √80
b) Ta có: √15 - 1 < √16 - 1 = 3
√10 > √9 = 3
Vậy √15-1 < √10
Ví dụ 4
a) 2 và 1 + √2
b) 1 và √3 - 1
c) 3√11 và 12
d) -10 và -2√31
Gợi ý đáp án
a) Ta có: 1 + √2 > 1 + 1 = 2
⇒ 2 < 1 + √2
b) √3 - 1 < √4 - 1 = 2 - 1 = 1
⇒ √3 - 1 < 1
c) 3√11 < 3√16 = 3.4 = 12
⇒ 3√11 < 12
d) -2√31 < -2√25 = -10
⇒ -2√31 < -10.
Link Download chính thức:
![👨](https://download.vn/Themes/Default/images/icon-comment.png)
Chủ đề liên quan
Có thể bạn quan tâm
-
Nghị luận xã hội về hiện tượng nói chuyện riêng trong giờ học
-
Văn mẫu lớp 7: Viết bài văn kể về một sự việc có thật liên quan đến nhân vật Trần Hưng Đạo
-
Công thức môn Tiếng Việt lớp 4, 5 - Tổng hợp kiến thức môn Tiếng Việt lớp 4, 5
-
Nghị luận xã hội về tệ nạn cờ bạc (2 Dàn ý + 15 Mẫu)
-
Nghị luận về câu Phải chăng sống ảo có nguy cơ đánh mất giá trị thực
-
Toán 6 Bài tập cuối chương 3 - Chân trời sáng tạo
-
Suy nghĩ của em về hiện tượng vứt rác bừa bãi nơi công cộng (Sơ đồ tư duy)
-
Dàn ý nghị luận xã hội về an toàn giao thông (6 Mẫu)
-
Bài văn mẫu Lớp 11: Bài viết số 2 (Đề 1 đến Đề 3)
-
Viết đoạn văn về ý nghĩa của những niềm vui bình dị trong cuộc sống
Mới nhất trong tuần
-
Bộ đề thi thử vào lớp 10 môn Toán năm 2019 - 2020 trường THCS Hồng Hà, Hà Nội
10.000+ -
Bộ đề kiểm tra 1 tiết Chương III Đại số lớp 9 (10 đề)
10.000+ -
Cách chứng minh 3 đường thẳng đồng quy
100.000+ -
Bài tập các hình khối trong thực tiễn (Có đáp án)
100+ -
Các dạng bài tập tần số và tần số tương đối
100+ -
Các dạng bài tập về đa giác đều (Có đáp án)
100+ -
Các dạng bài tập về căn thức (Có đáp án)
100+ -
Công thức tính đường cao trong tam giác
10.000+ -
Bộ đề thi học sinh giỏi lớp 9 môn Toán cấp Tỉnh, TP
100.000+ -
Tuyển tập 60 đề thi học kì 1 môn Toán lớp 9
50.000+