Phương pháp giải phương trình lượng giác Tài liệu ôn tập môn Toán lớp 11
Với mong muốn bổ trợ thêm kiến thức và nâng cao trình độ nhận định bài giải Phương trình Lượng giác, Eballsviet.com giới thiệu tài liệu Phương pháp giải phương trình lượng giác.
Đây là tài liệu vô cùng hữu ích đối với các em học sinh lớp 11, tài liệu gồm 49 trang tổng hợp toàn bộ các phương pháp giải kèm theo các bài tập giải phương trình lượng giác có đáp án chi tiết kèm theo. Mời các bạn cùng tham khảo và tải tài liệu tại đây.
Phương pháp giải phương trình lượng giác
![](https://st.download.vn/data/pdf/2019/07/25/phuong-phap-giai-phuong-trinh-luong-giac/bg1.png)
ThS. Trần Mạnh Hân (0974514498) FB: thayHanSP1
Trường THPT Nguyễn Hữu Tiến - Duy Tiên - Hà Nam
1
I. CÁC HỆ THỨC LƯỢNG GIÁC CƠ BẢN
2 2
2 2
2 2
sin 1 cos
sin cos 1
cos 1 sin
x x
x x
x x
2 2
2 2
1 1
1 tan tan 1
cos cos
x x
x x
2 2
2 2
1 1
1 cot cot 1
sin sin
x x
x x
1
tan .cot 1 cot
tan
x x x
x
4 4 2 2
6 6 2 2
sin cos 1 2 sin cos ;
sin cos 1 3 sin cos
x x x x
x x x x
3 3
3 3
sin cos (sin cos )(1 sin cos )
sin cos (sin cos )(1 sin cos )
x x x x x x
x x x x x x
II. DẤU CỦA CÁC HÀM SỐ LƯỢNG GIÁC
Góc I Góc II Góc III Góc IV
sin
x
cos
x
tan
x
cot
x
III. MỐI QUAN HỆ CỦA CÁC CUNG LƯỢNG GIÁC ĐẶC BIỆT
Hai cung đối nhau
cos( ) cos
x x
sin( ) sin
x x
tan( ) tan
x x
cot( ) cot
x x
Hai cung bù nhau
sin( ) sin
x x
cos( ) cos
x x
tan( ) tan
x x
cot( ) cot
x x
Hai cung phụ nhau
sin( ) cos
2
x x
cos( ) sin
2
x x
tan( ) cot
2
x x
cot( ) tan
2
x x
Hai cung hơn nhau
sin( ) sin
x x
cos( ) cos
x x
tan( ) tan
x x
cot( ) cot
x x
Hai cung hơn nhau
2
CÔNG TH
ỨC L
Ư
ỢNG GIÁC CẦN NẮM VỮNG
![](https://st.download.vn/data/pdf/2019/07/25/phuong-phap-giai-phuong-trinh-luong-giac/bg2.png)
ThS. Trần Mạnh Hân (0974514498) FB: thayHanSP1
Trường THPT Nguyễn Hữu Tiến - Duy Tiên - Hà Nam
2
sin( ) cos
2
x x
cos( ) sin
2
x x
tan( ) cot
2
x x
cot( ) cot
2
x x
Với
k
là số nguyên thì ta có:
sin( 2 ) sin
x k x
cos( 2 ) cos
x k x
tan( ) tan
x k x
cot( ) cot
x k x
IV. CÔNG THỨC CỘNG
sin( ) sin cos cos sin
cos( ) cos cos sin sin
tan tan
tan( )
1 tan tan
x y x y x y
x y x y x y
x y
x y
x y
sin( ) sin cos cos sin
cos( ) cos cos sin sin
tan tan
tan( )
1 tan tan
x y x y x y
x y x y x y
x y
x y
x y
Đặc biệt:
TH1: Công thức góc nhân đôi:
2 2 2 2
2
sin 2 2 sin cos
cos2 cos sin 2 cos 1 1 2 sin
2 tan
tan 2
1 tan
x x x
x x x x x
x
x
x
Hệ quả: Công thức hạ bậc 2:
2 2
1 cos2 1 cos2
sin ;cos
2 2
x x
x x
TH2: Công thức góc nhân ba:
3
3
sin 3 3 sin 4 sin
cos 3 4 cos 3 cos
x x x
x x x
V. CÔNG THỨC BIẾN ĐỔI TỔNG SANG TÍCH VÀ TÍCH SANG TỔNG
cos cos 2 cos cos
2 2
x y x y
x y
cos cos 2 sin cos
2 2
x y x y
x y
sin sin 2 sin cos
2 2
x y x y
x y
sin sin 2 cos sin
2 2
x y x y
x y
1
cos cos cos( ) cos( )
2
x y x y x y
1
sin sin cos( ) cos( )
2
x y x y x y
1
sin cos sin( ) sin( )
2
x y x y x y
1
cos sin sin( ) sin( )
2
x y x y x y
Chú ý:
sin cos 2 sin 2 cos
4 4
x x x x
sin cos 2 sin 2 cos
4 4
x x x x
![](https://st.download.vn/data/pdf/2019/07/25/phuong-phap-giai-phuong-trinh-luong-giac/bg3.png)
ThS. Trần Mạnh Hân (0974514498) FB: thayHanSP1
Trường THPT Nguyễn Hữu Tiến - Duy Tiên - Hà Nam
3
2
sin sin
2
u v k
u v
u v k
2
cos cos
2
u v k
u v
u v k
tan tan
2
u v k
u v
u k
cot cot
u v k
u v
u k
Đặc biệt:
sin 0
sin 1 2
2
sin 1 2
2
x x k
x x k
x x k
cos 0
2
cos 1 2
cos 1 2
x x k
x x k
x x k
Chú ý:
Điều kiện có nghiệm của phương trình
sin
x m
và
cos
x m
là:
1 1
m
.
Sử dụng thành thạo câu thần chú " Cos đối - Sin bù - Phụ chéo" để đưa các phương trình dạng sau
về phương trình cơ bản:
sin cos sin sin
2
u v u v
cos sin cos cos
2
u v u v
sin sin sin sin( )
u v u v
cos cos cos cos( )
u v u v
Đối với phương trình
2
2
cos 1 cos 1
sin 1
sin 1
x x
x
x
không nên giải trực tiếp vì khi đó phải giải 4
phương trình cơ bản thành phần, khi đó việc kết hợp nghiệm sẽ rất khó khăn. Ta nên dựa vào công
thức
2 2
sin cos 1
x x
để biến đổi như sau:
2
2
cos 1 sin 0
sin 2 0
cos 0
sin 1
x x
x
x
x
.
Tương tự đối với phương trình
2
2
2
2
1
cos
2 cos 1 0
2
cos2 0
1
1 2 sin 0
sin
2
x
x
x
x
x
.
Bài 1. Giải các phương trình sau
2
cos
4 2
x
2 sin 2 3 0
6
x
2 cos 2 0
3
x
3 tan 3
3
x
Hướng dẫn giải:
2 3
cos cos cos
4 2 4 4
x x
PHƯƠNG TRÌNH LƯỢNG GIÁC CƠ BẢN
Liên kết tải về
Link Download chính thức:
Phương pháp giải phương trình lượng giác 1,6 MB 26/07/2019 Download
Có thể bạn quan tâm
-
Thông tư 28/2016/TT-BGDĐT - Sửa đổi Chương trình giáo dục mầm non
-
Nghị luận về ngôn ngữ giao tiếp của học sinh hiện nay
-
Thuyết minh về ngôi trường (2 Dàn ý + 20 mẫu)
-
Đoạn văn tiếng Anh về ngày Nhà giáo Việt Nam (10 Mẫu)
-
Bài thơ Từ ấy - In trong tập Từ ấy, Tố Hữu
-
Nghị luận giữ gìn sự trong sáng của tiếng Việt
-
13 đề thi học kì 1 môn Toán lớp 1 năm học 2010 - 2011
-
Nghị luận xã hội về thực phẩm bẩn (2 Dàn ý + 10 mẫu)
-
Nghị luận xã hội về hiện tượng nói chuyện riêng trong giờ học
-
Văn mẫu lớp 7: Viết bài văn kể về một sự việc có thật liên quan đến nhân vật Trần Hưng Đạo
Sắp xếp theo
![👨](https://download.vn/Themes/Default/images/icon-comment.png)