Đề thi học sinh giỏi lớp 12 THPT tỉnh Bắc Giang năm 2013 - 2014 Môn: Toán
SỞ GIÁO DỤC VÀ ĐÀO TẠO | ĐỀ THI CHỌN HỌC SINH GIỎI LỚP 12 |
Câu 1 (4 điểm)
Giải hệ phương trình:
Câu 2 (4 điểm)
Cho ba số dương a,b,c thỏa mãn ab + bc + ca = 3. Chứng minh rằng:
Câu 3 (4 điểm)
Cho tam giác ABC có góc ABC < góc BAC. Trên đường thẳng BC lấy điểm D thỏa mãn góc CAD = góc ABC. Đường tròn (O) bất kì đi qua B, D cắt AB, AD lần lượt tại M, N. Kẻ hai tiếp tuyến AP, AQ với (O), P, Q thuộc (O). Gọi G là giao điểm của BN và DM, gọi I là trung điểm của AG.
a. Chứng minh rằng: P,Q,G thẳng hàng.
b. Chứng minh rằng: CI vuông góc với AG.
Câu 4 (4 điểm)
Cho dãy số (xn) thỏa mãn:
Chứng minh rằng dãy (xn) có giới hạn và tìm limxn
Câu 5 (4 điểm)
Tìm cặp các số nguyên (a,b) sao cho là một số nguyên.
Download tài liệu để xem chi tiết.
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:
