Một số phương pháp xử lý phương trình sau khi trục căn Tài liệu ôn thi THPT Quốc gia

Mời quý thầy cô giáo cùng các bạn học sinh lớp 12 cùng tham khảo tài liệu Một số phương pháp xử lý phương trình sau khi trục căn được Eballsviet.com đăng tải sau đây.

Một số phương pháp xử lý phương trình sau khi trục căn là tài liệu hữu ích dành cho các bạn đã biết cách nhẩm nghiệm triệt để bằng máy tính, đã biết cách trục với số, với biến và mong muốn tìm kiếm thêm kinh nghiệm trong việc xử lý phương trình sau khi trục căn. Nội dung chi tiết, mời các bạn tham khảo trong bài viết dưới đây.

Phương pháp xử lý phương trình sau khi trục căn

ThS. Nguyễn Văn Hoàng (0987698877) - GV Chuyên Quang Trung - BP Page 1
ThS. Nguyễn Văn Hoàng (0987698877)
GV Trường THPT Chuyên Quang Trung
Tài liệu dành cho các bạn đã biết ch nhẩm nghim triệt để bằng máy tính, đã biết cách
trc vi s, vi biến và mong muốn tìm kiếm thêm kinh nghiệm trong vic x phương
trình còn lại sau khi trc.
PHN 1. TINH THN TRỤC VÀ BA ĐIỂM CN NM
Trưc tiên, theo tôi cn nm tinh thn sau:
Khi nhn thy các phương pháp khác đều không thc hiện được thì ta mới nghĩ
đến trục căn, bởi việc x phương trình còn li sau khi trc ta không định
hướng trước đưc.
Mt s thuật x phương trình còn lại th là: B bớt căn biu thc
không âm, làm chặt min nghiệm, tách hạng t (thêm bớt max min ca biu
thc), bất đẳng thc, xét hàm số tìm GTLN GTNN, s dng h tm, chia
khong. Có thể thêm một vài thuật nữa, như trên cũng đã đủ dùng. Mi
thuật một li thế trong tng bài, rất nhiều bài phải kết hợp chúng với nhau.
Vic s dụng kĩ thuật nào nhiều khi còn tùy vào năng lực mi ngưi.
Thông thường, x lý phương trình còn lại là chứng minh vô nghiệm bng đánh giá: VT < 0,
VT > 0 hoặc VT > A và VP < A. Điều này có ba điểm cn nm:
Th nht: Làm cho miền nghim càng chặt càng dễ đánh giá.
Th hai: Trc nghiệm đơn thì trục vi s cũng đưc, trc vi biến cũng đưc, miễn việc
chứng minh phương trình còn lại vô nghiệm d dàng.
Th ba: thể nhiều cách chứng minh nghiệm cho một phương trình, y năng lực
mi người mà lựa chn.
Sau đây là ba ví dụ minh ha cho ba điểm cn nm trên.
Ví d m đầu 1: Giải phương trình:
22
2 4 5 2 1x x x x
.
Cách 1. (Trc nghiệm đơn với s và không quan tâm việc làm cht min nghim)
Nhn thy x = 2 là nghiệm của phương trình , nên ta biến đổi phương trình như sau:
PT
22
2 4 5 2 1x x x x
.
ThS. Nguyễn Văn Hoàng (0987698877) - GV Chuyên Quang Trung - BP Page 2
22
22
22
22
2 4 2 5 3 2 4
24
24
2 4 2 5 3
2
2
2 (*)
2 4 2 5 3
x x x x
x x x
x
x x x
x
xx
x x x


22
2
(*) 2
( 1) 3 2 5 3
xx
xx
Ta s chng minh mi hng t vế trái đều nh hơn 1. Tht vy:
2
2
1 2 ( 1) 3
( 1) 3 2
x
xx
x
điều này luôn đúng vì
2
( 1) 3 | 1| 1 2x x x x
.
Tương tự,
điều này cũng luôn đúng.
Bình luận. Việc tách hạng t chứng minh mi hng t đều nh hơn 1 không phải em hc
sinh nào cũng làm đưc.
Cách 2. (Trc nghiệm đơn với biến và quan tâm việc làm chặt min nghim)
T phương trình ta có đánh giá:
3 5 1
2 1 3 5 1
2
x x x

.
Nhn thy x = 2 là nghiệm của phương trình , nên ta biến đổi phương trình như sau:
22
22
2 4 5 ( 1) 0
11
(4 2 ) 0
2 4 5 ( 1)
PT x x x x x
x
x x x x x




Vi
1x
thì biu thc trong ngoặc dương, vy x = 2 là nghiệm phương trình.
Bình luận: Làm chặt min nghim + trc vi biến thì lời giải đẹp hơn. Nhiu bn ch m
cht đến
1
2
x 
thì vẫn khó khăn cho việc đánh giá.
ThS. Nguyễn Văn Hoàng (0987698877) - GV Chuyên Quang Trung - BP Page 3
Ví d m đầu 2. Giải phương trình :
23
3
12x x x
.
Cách 1. Trc vi s
ĐK.
3
2x
.
Nhn thy x=3 là nghiệm của phương trình , nên ta biến đổi phương trình
23
3
2
23
22
3
3
2
23
22
3
3
1 2 3 2 5
3 3 9
3
31
25
1 2 1 4
3 3 9
3 1 0
25
1 2 1 4
PT x x x
x x x
x
x
x
xx
x x x
x
x
xx












2
23
22
3
3
30
3 3 9
1
25
1 2 1 4
x
x x x
x
xx



(2)
Xét phương trình (2):
Ta s chng minh:
2VT VP
. Vic chng minh điều này nhiều cách, dưới đây
dùng Cosi quan sát bc ca biu thức, các bạn thể quy đồng, đặt n ph để chng
minh biu thức dương cũng được.
Ta có
2
2 2 2
3
3
1 2 1 4 2 2( 1) 4x x x
. Khi đó
22
22
3
3
33
2 2( 1) 4
1 2 1 4
xx
x
xx


Ta s chng minh
2
3
1 (*)
2 2( 1) 4
x
x

vi mi
3
2x
. Tht vy
2
(* ) 7 2 9 0xx
điều này đúng vi mi
3
2x
.
Biu thức còn lại:
22
33
3 9 3 9
2 5 5
x x x x
xx
. Ta s chng minh
2
3
39
2(**)
5
xx
x

vi mi
3
2x
. Tht vy
23
(**) 3 2 1x x x
vi mi
3
2x
. Điều này đúng do sử dng
Cosi VP.
Bình luận. Cách này tương đối dài nhiu bn thấy phương trình còn lại cng knh
nên nản chí.
Chia sẻ bởi: 👨 Trịnh Thị Thanh
Chỉ thành viên Download Pro tải được nội dung này! Download Pro - Tải nhanh, website không quảng cáo! Tìm hiểu thêm