Công thức cấp số cộng: Lý thuyết và bài tập Công thức tính cấp số cộng
Cấp số cộng là 1 dãy số (hữu hạn hoặc vô hạn) thỏa mãn điều kiện: Kể từ số hạng thứ 2 trở đi đều bằng số hạng đứng trước nó cộng với 1 số không đổi. Vậy công thức cấp số cộng là gì? Điều kiện thành lập cấp số cộng như thế nào? Mời các bạn cùng theo dõi bài viết dưới đây nhé.
Công thức cấp số cộng
I. Công thức tổng quát của cấp số cộng
\(\left( {{U_n}} \right) = \left\{ {\begin{array}{*{20}{c}} {{u_1} = a} \\ {{u_{n + 1}} = {u_n} + d} \end{array}\left( {n \in \mathbb{N}*} \right)} \right.\)d là công sai.
II. Số hạng thứ n của cấp số cộng
\({u_{n + 1}} = {u_1} + \left( {n - 1} \right)d \Rightarrow d = \frac{{{u_{n + 1}} - {u_1}}}{{n - 1}}\)
III.Điều kiện lập thành cấp số cộng
Ba số hạng \({u_{n - 1}},{u_n},{u_{n + 1}}\) là 3 số hạng liên tiếp của cấp số cộng khi \({u_n} = \frac{{{u_{n - 1}} + {u_{n + 1}}}}{2}\) với \(n \geqslant 1\)
IV. Tổng của n số hạng đầu của cấp số cộng
Tổng riêng thứ n xác định bởi công thức:
\(S = {u_1} + {u_2} + ... + {u_n} = \frac{{n\left( {{u_1} + {u_n}} \right)}}{2} = \frac{{n\left[ {2{u_1} + \left( {n - 1} \right)d} \right]}}{2}\)
Chú ý
a. Dãy số \(\left( {{U_n}} \right)\) là một cấp số cộng, công sai d \(\Leftrightarrow {u_{n + 1}} - {u_n} = d\) không phụ thuộc vào n
c. Để xác định một cấp số cộng, ta cần xác định số hạng đầu và công sai. Do đó, ta thường biểu diễn giả thiết bài toán qua \({u_1},d\)
V. Phân dạng bài tập cấp số cộng
Dạng 1: Nhận biết cấp số cộng
Bước 1: Tìm công sai khi biết hai số hạng liên tiếp nhau theo công thức:\(d = {u_n} – {u_{n – 1}},\forall n \ge 2.\)
Bước 2: Kết luận:
- Nếu d là số không đổi thì dãy \(\left( {{u_n}} \right)\) là CSC.
- Nếu d thay đổi theo n thì dãy \(\left( {{u_n}} \right)\) không là CSC.
Dạng 2: Tìm công sai từ công thức cấp số cộng
Sử dụng các tính chất của CSC ở trên, sau đó biến đổi để tính công sai d
Dạng 3: Tìm số hạng của cấp số cộng
Sử dụng công thức tính số hạng tổng quát \({u_n} = {u_1} + \left( {n – 1} \right)d\)
Dạng 4: Tính tổng cấp số cộng của n số hạng đầu tiên
Ta vận dụng công thức tính tổng cấp số cộng:
\(\begin{array}{l} {S_n} = {u_1} + {u_2} + … + {u_n}\\ = \frac{{\left( {{u_1} + {u_n}} \right).n}}{2}\\ = \frac{{\left[ {2{u_1} + \left( {n – 1} \right)d} \right].n}}{2} \end{array}\)
Dạng 5: Tìm cấp số cộng
- Tìm các yếu tố xác định một cấp số cộng như: số hạng đầu \({u_1},\) công sai d.
- Tìm công thức cho số hạng tổng quát \({u_n} = {u_1} + \left( {n – 1} \right)d.\)
VI. Bài tập cấp số cộng
Bài 1. Cho cấp cấp số cộng \((u_n)\) với \(u_1 = 3 và u_2 = 9\). Công sai của cấp số cộng đã cho bằng
Gợi ý
Công sai của cấp số cộng đã cho bằng \({u_2} – {u_1} = 6\)
Bài 2: Cho một CSC có\({u_1} = – 3;\,\,{u_6} = 27\). Tìm d ?
Gợi ý
\(\begin{array}{l} {u_6} = 27\\ \Leftrightarrow {u_1} + 5d = 27\\ \Leftrightarrow – 3 + 5d = 27\\ \Leftrightarrow d = 6 \end{array}\)
Bài 3: Cho một CSC có \({u_1} = \frac{1}{3};\,\,{u_8} = 26\) Tìm d?
Gợi ý
\(\begin{array}{l} {u_8} = 26 \Leftrightarrow {u_1} + 7d = 26\\ \Leftrightarrow \frac{1}{3} + 7d = 26\\ \Leftrightarrow d = \frac{{11}}{3} \end{array}\)
Bài 4: Cho CSC \(({u_n})\)thỏa:\(\left\{ \begin{array}{l} {u_5} + 3{u_3} – {u_2} = – 21\\ 3{u_7} – 2{u_4} = – 34 \end{array} \right.\)
1. Tính số hạng thứ 100 của cấp số.
2. Tính tổng cấp số cộng của 15 số hạng đầu.
3. Tính \(S = {u_4} + {u_5} + … + {u_{30}}.\)
Gợi ý
Từ giả thiết bài toán, ta có:
\(\begin{array}{l} \left\{ \begin{array}{l} {u_1} + 4d + 3({u_1} + 2d) – ({u_1} + d) = – 21\\ 3({u_1} + 6d) – 2({u_1} + 3d) = – 34 \end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l} {u_1} + 3d = – 7\\ {u_1} + 12d = – 34 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} {u_1} = 2\\ d = – 3 \end{array} \right. \end{array}\)
1. Số hạng thứ 100 của cấp số:\({u_{100}} = {u_1} + 99d = – 295\)
2. Tổng của 15 số hạng đầu: \({S_{15}} = \frac{{15}}{2}\left[ {2{u_1} + 14d} \right] = – 285\)
3. Ta có: \(\begin{array}{l} S = {u_4} + {u_5} + … + {u_{30}} = \frac{{27}}{2}\left[ {2{u_4} + 26d} \right]\\ = 27\left( {{u_1} + 16d} \right) = – 1242 \end{array}\)
Chú ý: Ta có thể tính S theo cách sau:
\(S = {S_{30}} – {S_3} = 15\left( {2{u_1} + 29d} \right) – \frac{3}{2}\left( {2{u_1} + 2d} \right) = – 1242.\)
Link Download chính thức:
Chủ đề liên quan
Có thể bạn quan tâm
-
Cách thay thế từ/cụm từ trong bài nghị luận văn học
-
Tập làm văn lớp 5: Tả cảnh buổi sáng trên cánh đồng
-
Tổng hợp dàn ý bài Câu cá mùa thu (9 Mẫu)
-
Soạn bài Tục ngữ về thiên nhiên, lao động và con người, xã hội (2) - Cánh diều 7
-
Cảm nhận về bài thơ Câu cá mùa thu của Nguyễn Khuyến
-
Mẫu vở tập tô chữ cho bé - Tập tô chữ cái cho bé chuẩn bị vào lớp 1
-
Phân tích bài thơ Câu cá mùa thu của Nguyễn Khuyến (3 Dàn ý + 19 mẫu)
-
Văn mẫu lớp 9: Nghị luận về vai trò của lao động đối với con người
-
Văn mẫu lớp 10: Dàn ý phân tích bài thơ Nắng mới (5 mẫu)
-
Văn mẫu lớp 10: Cảm nhận bài thơ Nắng mới (Dàn ý + 6 Mẫu)
Mới nhất trong tuần
-
Hướng dẫn sử dụng máy tính cầm tay giải nhanh trắc nghiệm lượng giác
50.000+ -
Hướng dẫn tìm công thức truy hồi của dãy số
50.000+ -
Góc giữa hai mặt phẳng: Định nghĩa, cách xác định và Bài tập (có đáp án)
100.000+ -
Bộ đề thi khảo sát chất lượng đầu năm môn Toán lớp 11 năm 2023 - 2024
10.000+ -
Phương trình tiếp tuyến
1.000+ -
Toán 11 Bài 17: Hàm số liên tục
100+ -
Phiếu bài tập cuối tuần Toán 11
100+ -
Bài tập đường thẳng và mặt phẳng trong không gian, quan hệ song song
10.000+ -
Giá trị lớn nhất, nhỏ nhất của hàm số lượng giác
1.000+ -
Tính tuần hoàn của hàm số lượng giác
1.000+